
1

Fundamentals

JavaScript.



2



Background.
• Javascript is Ubiquitous.

– … also on the server-side (node.js), embedded (Duktape)

• Written at Mosaic by Brendan Eich (early 1990s) under the name 
Mocha and later LiveScript, EMCAScript, and Jscript.

• Influenced heavily by Java, Self and Scheme.

• Douglas Crockford - JavaScript - Volume 1: The Early Years 

• Currently Trademarked by Oracle.

• ECMA standard 261

– ECMAScript.

3



 JavaScript Data Types.

• Language data types:

1. Primitives: number, string, boolean, null, undefined.

2. Everything else is an object (even functions).

• JS is a dynamically typed language.



 Primitive types.
• Suppose this code is in a file,  called primitives.js

• Thanks to the node.js platform, I can execute this code from the 
command line – no browser needed.

5



 Primitive types (The syntax).

var foo = 20

• var – keyword to indicate we are declaring something – a 
primitive number variable in this case.

• Identifier – ‘foo’ is an identifier or name for this thing.

– Lots of rules about valid format for identifiers (no spaces, 
don’t start with numeric character, etc etc)

• Operator – +, =, * (multiply), –, [ ] (subscript) etc

– Some rules about where they can appear in a statement.

6



Objects.

• The object - fundamental structure for representing complex 
data.

• A unit of composition for data ( or STATE).

• Objects are a set of key-value pairs defining properties.

– Keys (property names) are identifiers and must be unique

– Values can be any type, including other objects (nesting).

• Literal syntax for defining an object: 

 { <key1> : <value1>, <key2> : <value2>, ...}

– Example:

var me = { first_name: “Diarmuid”, last_name: “O’Connor” }



Objects.

• Two notations for accessing the value of a property:

1. Dot notation e.g me.first_name

2. Subscript notation e.g. me['first_name’]    (Note quotes)

• Same notations for changing a property value.

me.first_name = ‘Jeremiah’

me[‘last_name’] = ‘O Conchubhair’

• Subscript notation allows the subscript be a variable reference.

var foo = ‘last_name’ 

me[foo] = ……..

8



Objects.

9



Objects are dynamic.

• Properties can be added and removed at any time – JS is dynamic.

10



Nested objects.
• A property value may be an object structure.

• Nesting can be to any depth.

11



Object property.

• A property value can be a variable reference.

12



Object keys

• Internally JS stores keys as strings.

• Hence the subscript notation – me[‘age’]

13



Array data structure.

• Dfn: Arrays are an ordered list of values.

– An object’s properties are not ordered.

• Literal syntax:   [ <value1>,<value2>,... ]

• In JS, the array values may be of mixed type.

– Although mixed types may reflect bad design.

• Use an index number with the subscript notation to access individual 
elements:

14



Array data structure.
• In JS, arrays are really just ‘special’ objects:

– The indexes are not numbers, but properties - the index number is 
converted into a string:

nums[‘2’] same as nums[2]

– Special length property, e.g. var len = nums.length  // 4

– Some utility methods for manipulating elements e.g push, pop, 
shift, unshift, join etc

• push/pop – add/remove at the tail.

• shift/unshift – add/remove at the head.

15



Nested collections.

• Arrays and objects can be nested.

• Ex.:

– Array of array values.

array_outer[3][2]

– Array of objects

array_outer[2],propertyX.
– Object property with an array value.

objectY.propertyX[2]
– ……….

16



JS - Behavior structures

17



Looping/iteration constructs

18

A more elegant 
form later.



JavaScript functions.
• Fundamental unit of composition for logic ( or BEHAVIOUR). 

• Basic syntax: function <func_name>( <parameters> ) { <body of code> }

– Some functions don’t need parameters.

• A function’s body is executed by calling/invoking it with arguments - 
<func_name>( <argumentss>) 

19



Functions - Variable scopes.
• Every function creates a new variable scope.

– Variables declared inside the function are not accessible outside it.

– All variables defined within the function are “hoisted” to the start 
of the function, as if all the var statements were written first.

• You can use a variable inside a function before declaring it.

• Global scope – default scope for everything declared outside a 
function’s scope.

– Variables in global scope are accessible inside functions. 

20



Functions - Variable scopes.

21

Stack trace



JavaScript functions.

• Can be created using:

1. A declaration (previous examples).

2. An expression.

3. A method (of a custom object).

4. An anonymous unit.

• Can be called/invoked as:

1. A function  (previous examples).

2. A method.

3. A constructor.

22



Function Declarations

• Define a function using the syntax:

function name( ... ) { ... }

• Function definitions are “hoisted” to the top of the current scope.

– You can use a function before it is defined – like function-scoped 
variables.

• Can also define functions inside other functions – same scoping rules 
as variables.

23

Collapsed for 
convenience



Function Expressions

• Defines a function using the syntax:

var name = function( ... ) { ... }

• Unlike function declarations, there is no “hoisting”.

– You can’t use the function before it is defined, because the 
variable referencing the function has no value, yet.

• Useful for dynamically created functions.

• Called in the same way as function declarations:

name( argument1, argument2, ... )

24



Function Expressions

25



Function Returns

• Typically, functions perform some logic AND return a result.

• [A function without a return statement will return ‘undefined’]

26



Methods.

• A property value of an object can be a function, termed a method.
• The same form of function definition as function expressions.
• Syntax: var obj = { …….

                                 methodX : function(….) { …. },

                               …….. }
• Calling method syntax:  obj.methodX(….)

• Methods of an object can be redefined or added at any time.
– JS is dynamic!!

• Methods must be defined before use.

• Application design – The dominant design methodology encourages 
encapsulating state (data) and behavior (methods) into units called classes. 
In JS, most custom objects are a mix of state and methods, where the latter 
manipulate the state.  

27



28

Methods

Use ‘this’ to reference 
the enclosing object



Methods.

• Syntax comparison:

– Function: 

      computeTotal(person)     addMiddleName(person,’Paul')

– Method:  

person.computeTotal()    person.addMiddleName(me,’Paul’)

• The special ‘this’ variable.
– Always references the enclosing object.
– Used by methods to access properties of the enclosing object. 

29



Anonymous functions. 

• You can define a function without giving it a name:

function( ... ) { …. }

• Mainly used  for “callbacks” - when a function/method needs another 
function as an argument, which it  calls.
– EX. The setTimeout system function.

• [Note: Any type of function (declaration, expression, method) can be 
used as a callback, not just anonymous functions.] 

30



Anonymous functions. 
• A more elegant way of processing an array.

– Objective: Display every number > 20 from the array.

• The anonymous function is called by forEach(), once for each 
entry in the array. The function’s parameter (entry) will be set to 
the current array entry being processed.   

31



Constructors.
• The object literal syntax is not efficient for creating multiple objects of 

a common ‘type’.

– Efficiency = Amount of source code.

32

var customer1 = { name ’Joe Bloggs’,
       address  : ‘1 Main St’, 
       finances : {. . . . . },   
       computeTotal : function () { . . . . },
       adjustFinance : function (change) { . . . }
   }
var customer2 = { name ’Pat Smith’,
       address  : ‘2 High St’, 
       finances : {. . . . . },   
       computeTotal : function () { . . . . },
       adjustFinance : function (change) { . . . }
   }
var customer3 = . . . . . 

Constructers solve 
this problem
Constructers solve 
this problem



Constructors.

• Constructor - Function for creating (constructing) an object of a 
custom type.

– Custom type examples: Customer, Product, Order, Student, 
Module, Lecture.

• Idea borrowed from class-based languages, e.g. Java.

• No classes in Javascript.

• Convention: Capitalize function name to distinguish it from ordinary 
functions.

function Foo(. . . ) { ... } 

• Constructor call must be preceded by the new operator.

var a_foo = new Foo( . . . )

33



Constructors.
• What happens when a constructor is called?

1. A new (empty) object is created, ie. { } .

2. The this variable is set to the new object.

3. The function is executed.

4. The default return value is the object referenced by this.

34

function Customer (name_in,address_in,finances_in) {
  this.name = name_in
  this.address = address_in
  this.finances = finances_in  
  this.computeTotal = function () { . . . . }
  this.changeFinannce = function (change) { . . . . }

}
var customer1 = new Customer ('Joe Bloggs','I Main St.', {. . . } )
var customer1 = new Customer (’Pat Smith',’2 High St.', {. . . } )
console.log(customer1.name)     // Joe Bloggs
var total = customer1.computeTotal() 


