Introduction to Node.|s
Frank Walsh

Agenda

 What is Node.|s

* V8 engine

* Non Blockin and Blocking

* Typical Node.|s service structure

What's Node.|s

« High-performance server-side JavaScript

— Used to build scalable networked services and
applications.

* Uses the Google Chrome V8 just-in-time compilation to
Machine code

- Fast because V8 is mostly C.

 Well designed module system for third party code (i.e. Node
Packet Manage, NPM)

What's Node: V8 engine

Embeddable C++ component
- In the lab you (may have) needed to install C++
Can expose C++ objects to Javascript

Very fast and multi-platform
Find out a bit about it's history here:

http://www.google.com/googlebooks/chrome/big
_12.html

http://www.google.com/googlebooks/chrome/big_12.html
http://www.google.com/googlebooks/chrome/big_12.html

What's Node.|s: Event-based

Generally, input/output (io) is slow.

- Reading/writing to data store, probably across a network.
Calculations in cpu are fast.

- 2+2=4

Most time In programs spent waiting for io to complete.

- In applications with lots of concurrent users (e.g. web servers), you
can't stop everything and wait for io to complete.

Solutions to deal with this are:

- Blocking code with multiple threads of execution (Apache, IIS)
- Non-blocking, event-based code in single thread (NGINX, Node.|s)

Blocking (Traditional)

* Traditional code walits for input
before proceeding (Synchronous)

e The thread on a server "blocks" on 10
and resumes when It retums.

f’fs_vnchronous /O

| Thread waits during VO operaticn

Thread . File 10O

Asynchronous /O

| Thread DON'T wait during 'O operation

Thread — Ir .

\ — J

Non-blocking (Node)

 Node.js code runs in a Non-blocking, event-
based Javascript thread

- No overhead associated with threads

- Good for high concurrency (i.e. lots of client
requests at the same time)

’ffSynchrnnous /O N

| Thread waits during VO operation

Thread . File IO »

/Asynchrnnous {8

| Thread DON'T wait during 'O operation

Thread g -
- File 10 :
_ - . -

Blocking/Non-blocking Example

Blocking Non-blocking

» Read from file and set » Read from File
- equal to contents . Whenever read Is

* Print Contents complete, print
3 contents

* Do Something Else... Do Something Else...

Blocking/Non-blocking Example

Blocking = S
var contents = fs.readFileSync('/etc/hosts’);

console.log(contents);

console.log('Doing something else’);

fs.readFile('/etc/hosts’, function(err, contents) {
console.log(contents);

D;

console.log('Doing something else’);

Blocking vs. Non-blocking

 Threads consume resources

- Memory on stack
- Processing time for context switching etc.

* No thread management on single threaded
apps
- Just execute “callbacks” when event occurs

- Callbacks are usually in the form of anonamous
functions.

memaory in MB

30

20

10

Why does it matter...

regs/sec
. . nginx
® ThIS IS Why. 10000 apache
8000
6000 |
4000
2000
0
500 1000 1500 2000 2500 3000 3500 concurrent
connections
nginx
apache
http://blog.webfaction.com/a-little-holiday-present
500 1000 1500 2000 2500 3000 3500 concurrent

connections

http://blog.webfaction.com/a-little-holiday-present

Node.js Event Loop

var http = require(’'http");
var server = http.createServer(function (request, response) {
| response.writeHead(200, {"Content-Type": "text/plain"});

~ response.end("Hello World\n");

D;
server.listen(8080);

iconsole.log("Server running at http://127.0.0.1:8080/");

EVENT LOOP STARTS WHEN FINISHED

Checking for
Events

Callbacks

Example of 2 callbacks

var http = require('http’);

http.createServer(function(request, response
response.writeHead(200);
response.write("Hello!");

setTimeout(function(){
response.write("Good Bye!");
response.end();
}, 5000);
}).listen(8080);

Callback Timeline, Non Blocklng

- || Request comes in, triggers request event

B Request Callback executes
I setTimeout registered

-» | Request comes in, triggers request event

B Request Callback executes
I setTimeout registered

I triggers setTimeout event

| request I setTimeout Callback executes

T I triggers setTimeout eve

‘ | setTimeout Callback
I

[05 5 [Ds

Callback Timeline, Blocking

p o r Request comes in, triggers request event

ﬂ

Wasted T ime

B Request Callback executes

BN setTimeout executed

T

-» | Request comes in, waits for server

I triggers setTimeout event
I setTimeout Callback executed

I Request comes in
B Request Callback executes

Emitting Event in Node

* Many objects can emit events in node.

E—
E

« See here for a description of how HTTP Server

event
Taz‘z‘ach

{ When ‘request’ event is emitted]

http://nodejs.org/api/http.html#http_http_createserver_requestlistener

Node Modules

Node Modules

Node has a small core API
Most applications depend on 31 party modules

3rd party modules curated in online registry called the Node Package
Manager system (NPM)

NPM downloads and installs modules, placing them into a
node_modules folder in your current folder.

Node Modules

Installing a NPM Module is easy:
Navigate to the application folder and run:

npm install express

This Installs into a “node_module” folder in the
current folder.

To use the module In your code, use:
var express = require(‘express’);
This loads express from local node_modules folder.

Global Node Modules

Sometimes you may want to access modules from
the shell/command line.

You can install modules that will execute glovbaly by
including the '-g'.
Example, Grunt is a Node-based software
management/build tool for Javascript.

npm install -g grunt-cli

This puts the “grunt” command in the system path,
allowing it to be run from any directory.

http://gruntjs.com/getting-started

Creating your own Node Modules

* \We want to create the following module called
custom_hello.js:

var hello = function() {
console.log("hello!);

}

export
» To access in our application, app.js:

var hello = require('./custom_hello');
hello();

ello:

Creating your own Node Modules

* Another example custom_goodbye.|s:

exports.goodbye = function() {
console.log("Bye!");

}
« To access in our application, app.js

var gb = require(’./custom_goodbye");

gb.goodbye();

Creating your own Node Modules

« Exporting Multiple Functions, my_Module.js:

exports.hello = function() {
console.log("Hello!);

}
exports.goodbye = function() {
console.log("Bye!");

}
« To access in our application, app.js:

var myMod = require('./my_Module.js");
myMod.hello();
myMod.goodbye();

The require search

* Require searches for modules based on path
specified:
var myMod = require('./myModule') //current dir
var myMod = require('../myModule') //parent dir

var myMod = require('../modules/myModule")

 Just providing the module name will search In
node modules folder

var myMod = require('myModule’)

Node Applications Structure

Structuring Node Services

» Node Server Code needs to be structured

- Manage code base
- Keeps code maintainable

* Typical structure for Node.js service

- common code

- Malin server code

- Apl Implementation code
- Helper code

Example Approach:

* Use a “node” folder as the top level to contain all
node.js files

- Run npm in this folder to ensure just one
node modules folder

- Use a lib folder within the node folder for your code

-node
--->lib
--->node_modules

common.|S

» Can define a “node/lib/common.|s” for common code

// build-in modules

“exports.fs = require('fs')

“// npm modules

“exports.connect = require(‘connect')

/] utilities

“exports.zeropad = function(num){

| return num < 10 ? '0'+num : "+num

» Use require to load the common.js flle Anything

exported by common.js can be used in the calling
script:

“var common = require(’./common’)
~console.log(common.zeropad(1)) |
“var server = common.connect. createServer()
~common.fs.open('/etc/passwd’, ...)

