
Frank Walsh

(based on post by Stefan Tilkov)

http://www.infoq.com/articles/rest-introduction
And

http://www.ibm.com/developerworks/xml/library/wa-ajaxarch/

REST and Express
1



What is REST

Short for REpresentational State Transfer
A software architecture style for distributed 
hypermedia systems(WWW)
A set of principles that define how Web 
standards(HTTP and URIs) can be used.

One “incarnation” of the REST style is HTTP (and a set of 
related set of standards, such as URI). 

The way the Web’s architecture “should” be used
Coined by Roy Fielding in his PhD thesis
The “right” way to implement heterogeneous 
application-to-application communication?...

2



REST Concept

Resource Orientated
Resources are identified by uniform resource identifiers 
(URIs)

Resources are manipulated through their 
representations
Messages are self-descriptive and stateless
Multiple representations are accepted or sent

3



Representation Concept

What do you get when you request a web page?
A representation of a resource

Resources are just “concepts”
i.e. list of Customers, Dept. of Computing Maths and Physics. 

A client can request a specific representation of a 
resource from the representations available on a server

http://www.wit.ie/SchoolOfScience/DeptofComputingMaths
andPhysics/

4



State Transfer Concept

State refers to an application/session state

Clients initiate requests to servers; servers process requests 
and return appropriate responses

A client can either be transitioning between application 
states or "at rest". 

The client begins sending requests when it is ready to 
transition to a new state.

(i.e. request new URI)

While one or more requests are outstanding, the client is 
considered to be transitioning states.

The representation of each application state contains links 
that may be used next time the client chooses to initiate a new 
state transition.

5



State Transfer Concept

A Web-based application is a dynamically changing 
graph of

 state representations (pages)
potential transitions (links) between states

If it doesn’t work like that, it may be accessible from 
the Web, but it’s not really part of the Web

6



Rest Key Principles

1.Every “thing” has an identity
2.Link things together
3.Use standard set of methods
4.Resources can have multiple representations
5.Communicate statelessly

7



1-Identity

Everything identifiable in an application should get a 
unique global ID

URIs

URIs are consistent naming scheme for resources
Universally recognised standard
Example: companys assign unique product IDs. 
These can be URIs…

http://www.amazon.co.uk/gp/product/B002BWONF8/
http://example.com/customers/1234
http://example.com/orders/2007/10/776654
http://example.com/products/4554

8



2 – Linking Things

Hypermedia as the engine of application state.
This means the links that make the Web Work

Familiar with this from HTML but not restricted to this…

Any application retrieving the above XML  document can 
“follow” the links to retrieve more information.

Links can be provided by a different 
application/server/company 

naming scheme(URIs) are a global standard, all of the resources 
that make up the Web can be linked to each other.

Furthermore links allow the client (the service consumer) 
to move the application from one state to the next by 

following a link.

9



3 – Standard Methods

how does your browser know what to do with the 
URI?

every resource supports the same interface, the same set of 
methods

HTTP verbs: GET, POST, PUT, DELETE, HEAD, 
OPTIONS
From Object Orientated point of view, it’s like each RESTful 
Class must extend a Resource object that contains the above 
methods

Because Web resources use the same interface, you 
can be sure to get a representation of that resource by 
using the GET method.  

10



3 – Standard Methods

HEAD, GET, OPTIONS are defined as ”safe”
intended only for information retrieval

POST, PUT and DELETE are intended for actions 
which may cause side effects either on the server

changing of persisted data

HEAD, GET, OPTIONS, PUT and DELETE are 
defined as Idempotent methods

multiple identical requests should have the same effect as a 
single request

Post is NOT defined as Idempotent
sending an identical POST request multiple times may further 
affect state(e.g. financial transactions, ticket purchase)

Ever see “only click once/wait for response/don’t click back” 
on a web application

11



3 – Standard Methods Example

Order Management Class Models –
standard design
Client needs to be coded against 
these particular interfaces
Cant use a client that was built before 
these interfaces were specified

12



RESTful HTTP Approach

Define generic interface that 
makes up the HTTP 
application protocol.
Specific operations of the 
services have been mapped to 
the standard HTTP methods.
New set of resources created.

13



Comparison to SOAP-based Services

First approach has many operations and many kinds 
of data and a fixed number of Services
RESTful approach has fixed number of operations, 
many kinds of data and many objects/Resources to 
invoke those fixed methods upon.

If there’s 1 million orders in my database it means 1 million 
additional URIs on the web! So what? 

Opting for RESTful approach makes your app 
inherently part of the Web. 
Other approach usually involves one endpoint(URL) 
for each service, beyond which the methods can be 
accessed through some higher level protocol(e.g. 
SOAP)

14



4 - Multiple Representation

How does a client know how to request and deal with 
the data it retrieves?

Can look at HTTP headers: accept and content-type

HTTP allows separation of concerns between 
handling the data and invoking operations

Client can specify what data formats it can handle
a client can ask for a representation in a particular format.

GET /customers/1234 HTTP/1.1
Host: example.com 
Accept: application/json

15



5 - Stateless Communication

REST mandates communication is Stateless
Does not mean that application cannot have state

State must be:
A resource state
Kept on the client

A server should not have to retain the communication 
state beyond a single request

16



5 – Stateless Communication

Advantages of Stateless Comms:
Scalability. The server does not have to maintain state for each 
client
Isolation from  changes on the server 

not dependent on talking to the same server in two consecutive 
requests. Links from document returned by search engine will 
still work even if the search engine is shut down.

17



5 – What’s wrong with State on Servers
18

Remember, ideally software components are 
stateless.

Example: maintaining login credentials across a cluster of 
servers (an auto-scaled cluster in amazon). 
If Restful, requests should not depend of the ones before

So what if your web server is shut down/drops HTTP 
connection, what happens to your laptop in your cart if your 
load balancer redirects next HTTP request to another server???

Could use shared cache that all servers share.
Spread cache across n servers to stop imprisoned session data



Web API Design



API Design

• APIs expose functionality of an application 
or service 

• Designer must:
• Understanding enough of the important details 

of the application for which an API is to be 
created, 

• Model the functionality in an API that addresses 
all use cases that come up in the real world, 
following the RESTful principles as closely as 
possible.



Nouns are good, verbs are bad

• Keep your base URL simple and intuitive
• 2 base URLs per resource

• The first URL is for a collection; the second is for a specific element 
in the collection.

• Example
• /contacts
• /contacts/1234

• Keep verbs out of your URLS 



Use the HTTP verbs

 We can use the HTTP verbs to manipulate the 
resources

 GET, PUT, POST, DELETE  is equivalent to READ, 
UPDATE, CREATE, DELETE

 Rich set of intuitive capability



Rest In Express

• Can easily implement REST APIS using express 
routing functionality

• Functionality usually implemented in api routing 
script

app.get('/dogs', dogs.listAllDogs)
app.post('/dogs', dogs.addADog)
app.put('/dogs/:id', dogs.updateDog)
app.delete('/dogs/:id', dogs.deleteDog)



Creating Route Modules (Style 1)

var express = require('express')

var dogs = require('./api/dogs/index');

…

app.get('/dogs', dogs.listAllDogs);

// GET the homepage

exports.listAllDogs = function(req, res){

…);

};

server.js

index.js



Creating Route Modules (Style 2)

/*

* Module dependencies

*/

module.exports = function(app){

// GET home page

app.get('/dogs', function(req, res){

...

});

}

server.js

index.js

// Routes

require('./api/dogs/index')(app);



Express Request Object

•The req object represents the HTTP request.
by convention, the object is always referred to as

'req', Response is 'res'
•Can use it to access the request query string, 
parameters, body, HTTP headers.
•Example:

app.get('/user/:id', function(req, res){
res.send('user ' + req.params.id);

});



req.body
• Contains key-value pairs of data submitted in the request body. 

• Need body-parsing middleware such as body-parser.

• This example shows how to use body-parsing middleware to populate 

req.body.

var app = require('express')();

var bodyParser = require('body-parser');

var multer = require('multer'); 

app.use(bodyParser.json()); // for parsing application/json

app.use(bodyParser.urlencoded({ extended: true })); // for 

parsing application/x-www-form-urlencoded

app.use(multer()); // for parsing multipart/form-data

app.post('/', function (req, res) {

console.log(req.body);

res.json(req.body);

})



Response Object

• The res object represents the HTTP response 
that an Express app sends when it gets an 
HTTP request.

app.get('/user/:id', function(req, 

res){ res.send('user ' + 

req.params.id); });



Response Properties

• res.json([body])

– Sends a JSON response. This method is identical 
to res.send() with an object or array as the 
parameter. 

res.json({ user: 'tobi' }) 
res.status(500).json({ error: 'message' })



Response Properties

• res.send([body])

– Sends the HTTP response.

– The body parameter can be a String, an object, or 
an Array. 

– For example:
res.send({ some: 'json' }); 

res.send('<p>some html</p>'); 

res.status(404).send('Sorry, we cannot find that!'); 

res.status(500).send({ error: 'something blew up' 

});



Response Properties

• res.format(object)
– Performs content-negotiation on the Accept HTTP header on the request object

res.format({

'text/plain': function(){

res.send('hey');

},

'text/html': function(){

res.send('<p>hey</p>');

},

'application/json': function(){

res.send({ message: 'hey' });

},

'default': function() {

// log the request and respond with 406

res.status(406).send('Not Acceptable');

}

});



Express Route Filters

//Catch-all

app.all('/app(/*)?',  function(req, res, next) {

if(req.session && req.session.userName) {

next();

} else {

res.redirect('/login?redir=' + req.url);

}

});



Further Reference

•ExpressJS.com - Official Express Homepage
• Node and Express Tutorial


