
Frank Walsh

(based on post by Stefan Tilkov)

http://www.infoq.com/articles/rest-introduction
And

http://www.ibm.com/developerworks/xml/library/wa-ajaxarch/

REST and Express
1

What is REST

Short for REpresentational State Transfer
A software architecture style for distributed
hypermedia systems(WWW)
A set of principles that define how Web
standards(HTTP and URIs) can be used.

One “incarnation” of the REST style is HTTP (and a set of
related set of standards, such as URI).

The way the Web’s architecture “should” be used
Coined by Roy Fielding in his PhD thesis
The “right” way to implement heterogeneous
application-to-application communication?...

2

REST Concept

Resource Orientated
Resources are identified by uniform resource identifiers
(URIs)

Resources are manipulated through their
representations
Messages are self-descriptive and stateless
Multiple representations are accepted or sent

3

Representation Concept

What do you get when you request a web page?
A representation of a resource

Resources are just “concepts”
i.e. list of Customers, Dept. of Computing Maths and Physics.

A client can request a specific representation of a
resource from the representations available on a server

http://www.wit.ie/SchoolOfScience/DeptofComputingMaths
andPhysics/

4

State Transfer Concept

State refers to an application/session state

Clients initiate requests to servers; servers process requests
and return appropriate responses

A client can either be transitioning between application
states or "at rest".

The client begins sending requests when it is ready to
transition to a new state.

(i.e. request new URI)

While one or more requests are outstanding, the client is
considered to be transitioning states.

The representation of each application state contains links
that may be used next time the client chooses to initiate a new
state transition.

5

State Transfer Concept

A Web-based application is a dynamically changing
graph of

 state representations (pages)
potential transitions (links) between states

If it doesn’t work like that, it may be accessible from
the Web, but it’s not really part of the Web

6

Rest Key Principles

1.Every “thing” has an identity
2.Link things together
3.Use standard set of methods
4.Resources can have multiple representations
5.Communicate statelessly

7

1-Identity

Everything identifiable in an application should get a
unique global ID

URIs

URIs are consistent naming scheme for resources
Universally recognised standard
Example: companys assign unique product IDs.
These can be URIs…

http://www.amazon.co.uk/gp/product/B002BWONF8/
http://example.com/customers/1234
http://example.com/orders/2007/10/776654
http://example.com/products/4554

8

2 – Linking Things

Hypermedia as the engine of application state.
This means the links that make the Web Work

Familiar with this from HTML but not restricted to this…

Any application retrieving the above XML document can
“follow” the links to retrieve more information.

Links can be provided by a different
application/server/company

naming scheme(URIs) are a global standard, all of the resources
that make up the Web can be linked to each other.

Furthermore links allow the client (the service consumer)
to move the application from one state to the next by

following a link.

9

3 – Standard Methods

how does your browser know what to do with the
URI?

every resource supports the same interface, the same set of
methods

HTTP verbs: GET, POST, PUT, DELETE, HEAD,
OPTIONS
From Object Orientated point of view, it’s like each RESTful
Class must extend a Resource object that contains the above
methods

Because Web resources use the same interface, you
can be sure to get a representation of that resource by
using the GET method.

10

3 – Standard Methods

HEAD, GET, OPTIONS are defined as ”safe”
intended only for information retrieval

POST, PUT and DELETE are intended for actions
which may cause side effects either on the server

changing of persisted data

HEAD, GET, OPTIONS, PUT and DELETE are
defined as Idempotent methods

multiple identical requests should have the same effect as a
single request

Post is NOT defined as Idempotent
sending an identical POST request multiple times may further
affect state(e.g. financial transactions, ticket purchase)

Ever see “only click once/wait for response/don’t click back”
on a web application

11

3 – Standard Methods Example

Order Management Class Models –
standard design
Client needs to be coded against
these particular interfaces
Cant use a client that was built before
these interfaces were specified

12

RESTful HTTP Approach

Define generic interface that
makes up the HTTP
application protocol.
Specific operations of the
services have been mapped to
the standard HTTP methods.
New set of resources created.

13

Comparison to SOAP-based Services

First approach has many operations and many kinds
of data and a fixed number of Services
RESTful approach has fixed number of operations,
many kinds of data and many objects/Resources to
invoke those fixed methods upon.

If there’s 1 million orders in my database it means 1 million
additional URIs on the web! So what?

Opting for RESTful approach makes your app
inherently part of the Web.
Other approach usually involves one endpoint(URL)
for each service, beyond which the methods can be
accessed through some higher level protocol(e.g.
SOAP)

14

4 - Multiple Representation

How does a client know how to request and deal with
the data it retrieves?

Can look at HTTP headers: accept and content-type

HTTP allows separation of concerns between
handling the data and invoking operations

Client can specify what data formats it can handle
a client can ask for a representation in a particular format.

GET /customers/1234 HTTP/1.1
Host: example.com
Accept: application/json

15

5 - Stateless Communication

REST mandates communication is Stateless
Does not mean that application cannot have state

State must be:
A resource state
Kept on the client

A server should not have to retain the communication
state beyond a single request

16

5 – Stateless Communication

Advantages of Stateless Comms:
Scalability. The server does not have to maintain state for each
client
Isolation from changes on the server

not dependent on talking to the same server in two consecutive
requests. Links from document returned by search engine will
still work even if the search engine is shut down.

17

5 – What’s wrong with State on Servers
18

Remember, ideally software components are
stateless.

Example: maintaining login credentials across a cluster of
servers (an auto-scaled cluster in amazon).
If Restful, requests should not depend of the ones before

So what if your web server is shut down/drops HTTP
connection, what happens to your laptop in your cart if your
load balancer redirects next HTTP request to another server???

Could use shared cache that all servers share.
Spread cache across n servers to stop imprisoned session data

Web API Design

API Design

• APIs expose functionality of an application
or service

• Designer must:
• Understanding enough of the important details

of the application for which an API is to be
created,

• Model the functionality in an API that addresses
all use cases that come up in the real world,
following the RESTful principles as closely as
possible.

Nouns are good, verbs are bad

• Keep your base URL simple and intuitive
• 2 base URLs per resource

• The first URL is for a collection; the second is for a specific element
in the collection.

• Example
• /contacts
• /contacts/1234

• Keep verbs out of your URLS

Use the HTTP verbs

 We can use the HTTP verbs to manipulate the
resources

 GET, PUT, POST, DELETE is equivalent to READ,
UPDATE, CREATE, DELETE

 Rich set of intuitive capability

Rest In Express

• Can easily implement REST APIS using express
routing functionality

• Functionality usually implemented in api routing
script

app.get('/dogs', dogs.listAllDogs)
app.post('/dogs', dogs.addADog)
app.put('/dogs/:id', dogs.updateDog)
app.delete('/dogs/:id', dogs.deleteDog)

Creating Route Modules (Style 1)

var express = require('express')

var dogs = require('./api/dogs/index');

…

app.get('/dogs', dogs.listAllDogs);

// GET the homepage

exports.listAllDogs = function(req, res){

…);

};

server.js

index.js

Creating Route Modules (Style 2)

/*

* Module dependencies

*/

module.exports = function(app){

// GET home page

app.get('/dogs', function(req, res){

...

});

}

server.js

index.js

// Routes

require('./api/dogs/index')(app);

Express Request Object

•The req object represents the HTTP request.
by convention, the object is always referred to as

'req', Response is 'res'
•Can use it to access the request query string,
parameters, body, HTTP headers.
•Example:

app.get('/user/:id', function(req, res){
res.send('user ' + req.params.id);

});

req.body
• Contains key-value pairs of data submitted in the request body.

• Need body-parsing middleware such as body-parser.

• This example shows how to use body-parsing middleware to populate

req.body.

var app = require('express')();

var bodyParser = require('body-parser');

var multer = require('multer');

app.use(bodyParser.json()); // for parsing application/json

app.use(bodyParser.urlencoded({ extended: true })); // for

parsing application/x-www-form-urlencoded

app.use(multer()); // for parsing multipart/form-data

app.post('/', function (req, res) {

console.log(req.body);

res.json(req.body);

})

Response Object

• The res object represents the HTTP response
that an Express app sends when it gets an
HTTP request.

app.get('/user/:id', function(req,

res){ res.send('user ' +

req.params.id); });

Response Properties

• res.json([body])

– Sends a JSON response. This method is identical
to res.send() with an object or array as the
parameter.

res.json({ user: 'tobi' })
res.status(500).json({ error: 'message' })

Response Properties

• res.send([body])

– Sends the HTTP response.

– The body parameter can be a String, an object, or
an Array.

– For example:
res.send({ some: 'json' });

res.send('<p>some html</p>');

res.status(404).send('Sorry, we cannot find that!');

res.status(500).send({ error: 'something blew up'

});

Response Properties

• res.format(object)
– Performs content-negotiation on the Accept HTTP header on the request object

res.format({

'text/plain': function(){

res.send('hey');

},

'text/html': function(){

res.send('<p>hey</p>');

},

'application/json': function(){

res.send({ message: 'hey' });

},

'default': function() {

// log the request and respond with 406

res.status(406).send('Not Acceptable');

}

});

Express Route Filters

//Catch-all

app.all('/app(/*)?', function(req, res, next) {

if(req.session && req.session.userName) {

next();

} else {

res.redirect('/login?redir=' + req.url);

}

});

Further Reference

•ExpressJS.com - Official Express Homepage
• Node and Express Tutorial

