
MongoDB and Cloud Storage

Frank Walsh

Agenda

• Cloud Databases

– The CAP theorem

– Distributed Storage

– Distributed Data Models

• MongoDB

– Querying

– Integrating with Node.js

– The Contacts API implementation

Databases in Enterprise Apps

• Most data driven enterprise applications need
a database

• In traditional enterprise applications, this
requires
– Backups

– Fail over

– Maintenance

– Capacity provisioning

• Usually handled by a Database Administrator.

Databases in the Cloud

• For some apps, a traditional database may not be
the best fit
– Does the app require transactional integrity?

– Do you need db schema definition?

– Do you know your scaling requirements, particularly if
it’s a web app?

• One approach is to use the Cloud for you DB
– Designed for scale

– Can be outsourced so you don’t have to deal with
infrastructure requirements.

Cloud DB Advantages

• Removes Management costs
• Inherently scalable
• Latency is predictable and constant
• No need to define schemas etc.
• Lots of Cloud DB offerings out there

– SQL based
– NoSQL based

• If organisation policy/standards do not allow
outsourcing:
- Can host yourself, most NoSQL DBs are free.

ACID

• Traditional databases offer ACID semantics for data transactions:
– Atomicity: transactions must complete fully, or roll back entirely
– Consistency: completed transactions must comply with all database

schema constraints
– Isolation: transactions should not interact with each other in non-

deterministic ways
– Durability: completed transactions are guaranteed to be permanently

stored

• Retaining these characteristics in large scale distributed cloud
databases is not feasible
– transactions require data locking and/or versioning

• Even in traditional SQL databases, these constraints are often
relaxed to gain speed and scale - e.g. different levels of isolation
(dirty reads, etc.)

CAP (in theory)

• Distributed, scalable,
cloud databases can't give
you ACID semantics
without making trade-
offs.

• You can only have two of:
• Consistency: clients always

see the same data
• Availability: clients can

always get a response in
reasonable time

• Partition tolerance: the
system keeps working even
if parts of it are down

CAP (realistic approach…)

• The CAP trade-off was introduced as a conjecture by Eric Brewer
(Inktomi co-founder) in 2000

• According to Brewer…
the '2 of 3' view is misleading on several fronts.

1. Partitions are rare, there is little reason to forfeit C or A when the
system is not partitioned.

2. The choice between C and A can occur many times within the same
system at very fine granularity; not only can subsystems make
different choices, but the choice can change according to the
operation or even the specific data or user involved.

3. All three properties are more continuous than binary. Availability is
obviously continuous from 0 to 100 percent, but there are also
many levels of consistency, and even partitions have nuances,
including disagreement within the system about whether a
partition exists.“[1]

CAP and ACID…

• According to Brewer

• In ACID, the C means that a transaction preserves all
the database rules…., the C in CAP refers only to single-
copy consistency, a strict subset of ACID consistency.

• ACID consistency also cannot be maintained across
partitions; partition recovery will need to restore ACID
consistency…..

• maintaining invariants during partitions might be
impossible, thus the need for careful thought about
which operations to disallow and how to restore
invariants during recovery."

ALPS Systems
1. Availability. All operations issued to the data store complete successfully. No

operation can block indefinitely or return an error signifying that data is
unavailable.

2. Low Latency. Client operations complete “quickly.” Commercial service-level
objectives suggest average performance of a few milliseconds and worse-case
performance (i.e., 99.9th percentile) of 10s or 100s of milliseconds [16].

3. Partition Tolerance. The data store continues to operate under network
partitions, e.g., one separating datacenters in Asia from Europe.

4. High Scalability. The data store scales out linearly. Adding N resources to the
system increases aggregate throughput and storage capacity by O(N).

5. Stronger Consistency. An ideal data store would provide linearisability -
sometimes informally called strong/strict consistency - which dictates that
operations appear to take effect across the entire system at a single instance in
time between the invocation and completion of the operation.

Cloud Database Practices

• Drop Consistency
– this makes distributed systems much easier to build

• Drop SQL and the relational model
– simpler structures are easier to distribute:

• key/value pairs

• structured documents

• pseudo-tables

• tend to be schema-free,accepting data as-is

• Offer HTTP interfaces using XML or JSON

• Use in-memory storage aggressively

Designing Distributed Data

• App data is not homogeneous
– some kinds of data will be much larger

• consider using different databases for different
requirements:

• user details,billing - needs consistency
– require traditional database

• user data,content - needs partition tolerance
– replicate to keep safe

• analytics,sessions - needs availability
– "eventually consistent" is good enough

Denormalisation

• Join operations, even on traditional databases,
have high overhead

• With large scale distributed databases: Assume
you can only perform queries against one "table"
at a time

• Place all the data you need in each table,where
you need
– "denormalize" your data by copying it where needed

this does increase code complexity
– often necessary to achieve desired performance

Sharding

• Once data becomes too big for one machine,what
do you do?
– break it into "shards" - subsets of the data and run

each one as an independent database

• Sharding is typically performed using a hash
function on a subset of data fields

• Shard resolution is handled by the client or
hidden by a service gateway

Map-Reduce

• Primary data processing algorithm for distributed data
• First MAP data into required form, and then REDUCE it to

get desired result:
• MAP: transform individual data entities

– e.g.count number of words in a document

• REDUCE:collect output and summarize
– e.g.total the word counts

• By splitting data into independent subsets, Map-Reduce
can be performed in a parallel, fault tolerant manner

• Often the easiest way to perform complex queries and
transformations on large distributed data sets

• http://tarnbarford.net/journal/mapreduce-on-mongo

MONGODB

Introduction

• Document-oriented database
– but closer to traditional SQL databases than others

• Uses JSON natively - perfect fit for Node.js
• Query language with many SQL features

– Uses JSON too, and has an easy learning curve

• Inbuilt sharding support means you can scale
– Aggressively uses memory for high speed

• be careful:default configuration does not sync to disk
• Commercial support - 10gen.com product

– cloud hosting providers - e.g.mongoLab.com

• Community support - popular choice

Mongo Terminology

• Each database contains a set of "Collections"
• Collections are analogous to SQL tables
• Collections contain a set of JSON documents

– there is no schema

• the documents can all be different
– means you have rapid development
– adding a property is easy - just starting using in your code

• makes deployment easier and faster
– roll-back and roll-forward are safe - unused properties are just

ignored

• Collections can be indexed and queries
• Operations on individual documents are atomic

The MongoDB Query Language

• MongoDB provides a JavaScriptAPI and JSON-based query language
• Use the MongoDB console to execute queries

– similar to usingMySQL console

• Access by running the mongo command
– Example: list of employees

db.employees.find()

• db = current database
• employees = the employees collection
• .find() = collectionAPI method (coorresponds to collection URL in

last lecture…)
• The Result Set is a list of JavaScript objects, representing matched

documents

MongoDB: Inserts

• Collections do not need to be created explicitly
– just insert a document

• MongoDB automatically assigns a 12 byte unique identifier to any
document
– the _id property

• Stored internally as binary
– the ObjectId wrapper object is provided to work with these identifiers

- i.e.specify them using hex strings

> db.city.insert({name:'Waterford',
country:'Ireland'})
> db.city.find()
{ "_id" : ObjectId("4f3a3f530b74e3768d4801ca"),
name:'Waterford', country:'Ireland'}

• See http://www.mongodb.org/display/DOCS/Inserting for more

MongoDB:Queries

• Documents are retrieved by specifying a set of conditions
to match against

• simplest case:query-by-example
• provide a subset of properties that must match

> db.city.find({name:'Waterford'})
{ "_id" : ObjectId("4f3a3f530b74e3768d4801ca"),
name:'Waterford',country:'Ireland'}

• More complex queries use a convention of embedded
meta- properties to specify conditions these are signified
with a $ prefix Example:{name:{$exists:true}}

returns documents that have a name property

MongoDB:Query Meta Properties

• Common meta-properties used with the update command are:
– $gt, $gte, $lt, $lte

meaning:
>, >=, <,<=
• Example:

{price:{$gte:10, $lte:20}} //select documents where 10 <= price <= 20

– $and, $or
meaning
and or

• Example
{$and: [{price:10},{price:20}]}

– $in, $nin
analagous to SQL IN, the property must be "in" or "not in" the array of values
{price: $in:[10,20]}

– regular expressions
{word: /th^/i }

• See http://www.mongodb.org/display/DOCS/Advanced+Queries for more

MongoDB:Updates

• Documents are updated by providing:
– a query to select the relevant subset of documents,and an update

specification,which is either: a complete replacement document,or
meta-properties that modify specific document properties

• example:
$set changes specific properties
Example:complete replacement:
> db.city.insert({name:'dublin'})
> db.city.update({name:'dublin'}, {name:'Dublin',county:'Dublin'})

• Example:modify specific properties:
> db.city.insert({name:'Cork',county:'cork'})
> db.city.update({name:'Cork'}, {$set:{county:'Cork'}})

• See http://www.mongodb.org/display/DOCS/Updating for more

MongoDB:Update Properties

• Common meta-properties used with the update command
are:
– $set - sets specified properties,but leaves others alone

$set:{name:'New Name'}

• $unset - deletes specified properties
$unset:{name:1}

• $inc - increments a numeric property
inc:{ counter: 2 }

adds 2 to the counter property, or if it does not exist, sets it
to 2

• $push, $pop - add to or remove values from,an array
– $push: { comments: {who:..., msg:...} }
– $pop: {comments: -1 }

MongoDB:Upserts

• The MongoDB update command can optionally insert a
document if it is not found. This is known as an 'upsert'

• This is useful when starting counters as it avoids
corrupting the count when two independent updates
try to initialize the counter

db.counters.update({name:'foo'}, {$inc:{value:1}},
true)
• The first update will create the counter:

{name:'foo', value:1}
• The second update will increment the counter:

{name:'foo', value:2}

MONGO DB NODE.JS DRIVER

MongoDB Node.jsDriver

• To connect Node.js to MongoDB you need a database
driver

• A Node.js module that communicates over the wire to
MongoDB,and presents an API over the database.

• The one we’ll look at available with NPM:

http://docs.mongodb.org/ecosystem/drivers/node-js/

npm install mongodb

var mongodb = require('mongodb')

node-mongodb-native

• Provides low-level interface to MongoDB and
replicates the MongoDB Console
– suffers badly from callbacks !

• Used by higher level MongoDB modules:
– mongoose:Object Relational Mapper
– mongoskin:simplerAPI to reduce callbacks

• Sufficient for smaller apps

Connecting to MongoDB using Node

var mongo = require('mongodb');

var mongoClient = mongo.MongoClient;

var mongoDb;

var url = ‘mongodb://localhost:27017/myproject’

mongoClient.connect(url, function(err, db) {
if(!err) {

console.log("We are connected");

mongoDb = db; }

else

{console.log("Unable to connect to
the db");

}

}

);

Inserting a Document

The following function that will insert a document:
if (mongoDb){

var collection = mongoDb.collection('contacts');

collection.insert(contact, {w:1}, function(err, result) {

if (err) {

console.log({'error':'An error has occurred'});

} else {

console.log('Success: ' + JSON.stringify(result[0]));}

});

}

else

{

console.log('No database object!');

}

• The insert function returns a result object that contains several fields that might be useful.
– result Contains the result document from MongoDB
– ops Contains the documents inserted with added **_id** fields
– connection Contains the connection used to perform the insert

Updating a Document

• The following simple document update by adding a new field b to
the document that has the field a set to 2.

// Get the documents collection

var collection = db.collection('documents');

// Update document where a is 2, set b equal to 1

collection.update({ a : 2 }

, { $set: { b : 1 } }, function(err, result) {

console.log("Updated the document with the field a equal to 2");

callback(result);

});

• The method will update the first document where the field a is
equal to 2 by adding a new field b to the document set to 1.

Deleting a Document

• This will remove the first document where the field a equals to 3.

var removeDocument = function(db, callback) {

// Get the documents collection

var collection = db.collection('documents');

// Insert some documents

collection.remove({ a : 3 }, function(err, result) {#

If (!err){

console.log("Removed the document with the field a equal to 3");}

}

else{

console.log(“Did not remove document");}

}

callback(result);

});

}

