
W E B SE R V I C E C O M M UNI C A T I O N

F R A NK W A L SH

External Data Representation &
Indirect Messaging

Agenda

 External Data Representations

XML

 JSON

 Indirect messaging
 Group Communication

 Publish/Subscribe

 Queueing

External Data Representation

 Information in processes/programs held in Data
Structures
 E.g Array of Strings , Object instances,

 For one program to transmit information to another
across a network, the corresponding data structure must
be “flattened”
 converted to a sequence of bytes before transmission and then

rebuilt
 Sort of analogous to getting an ice cube through a funnel.
 Turn the ice cube to water
 Pass it through the funnel
 Reconstruct the ice cube(freeze the water again)
 How do you reconstruct the ice cube with exactly the same

dimensions?

External Data Representation

 To pass data across a channel between two
computers:

 values are converted to an agreed external format before
transmission. Values converted to the local form on receipt

 The values are transmitted in the sender’s format, together
with an indication of the format used, and the recipient

converts the values if necessary

 An agreed standard for the representation of data
structures and primitive values is called an
external data representation

External Data Representation

 Marshalling

 the process of taking a collection of data items and
assembling them into a form suitable for transmission in a
message

 Unmarshalling
 The reverse of above

 Next we’ll look at 2 external data representation
machanisms
 XML

 JSON

External Data Representation
XML

 eXtensible Markup Language(XML)

 Same heritage as HTML(but XML is NOT HTML)

 XML data items are tagged with ‘markup’ strings

 used to describe the logical structure of the data

 XML has many uses(as you will see later). For now
we confine ourselves to external data representations

 Has many cool features including
 Extensible

 Textual

 Kind of human readable and machine readable...

XML

 Above shows XML definitions of the Person
structure.
 As with xHTML, tags enclose character data.

 Tags : <name>, <place>,<year> data:”Smith”, “London”…

 Namespaces provide a means for scoping names

<person pers:id="123456789" xmlns:pers =
"http://www.cdk5.net/person">

<pers:name> Smith </pers:name>

<pers:place> London </pers:place >

<pers:year> 1984 </pers:year>

</person>

<person id="123456789">

<name>Smith</name>

<place>London</place>

<year>1984</year>

<!-- a comment -->

</person >

namespace

External Data Representation
JSON

 JavaScript Object Notation

 Lightweight text-based open standard designed for
human readable data interchange.

 Can represent simple data structures and associative
arrays.

 Good for serializing and transmitting structured data
across a network

JSON

 JSON is often used in Ajax
techniques

 Often seen as low overhead
alternative to XML

 Application programming
interfaces(APIs) exist for most programming
languages

{
person:{

id:123456789,

name:'Smith',
place:'London',

year:1984

}
}

Object Serialisation vs. XML vs. JSON

 XML can include type information(using XML schema)
 XML designed to be “platform independent”, open standard

 most programming languages, including Java, provide processors
for translating between XML and language-level objects

 JSON
 More straight forward than XML

 In XML, same data can be represented several ways(example in
class)
<person id=“123456779” name=“smith” place=“london”
year=“1984” />
Same representation in JSON

 JSON has one straight forward way

Indirect Messaging

Using the “Middleman”

 Communication between processes using an intermediary

 Sender “The middle-man” Receiver

 No direct coupling

 Up to now, only considered Direct Coupling

 Introduces a degree of rigidity

 Consider…

 What happens if client or server fails during communication in
Direct Coupling?

 Two important properties of intermediary in communication

 Space uncoupling

 Time uncoupling

Space and Time uncoupling

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Time uncoupling vs. Asynchronous Comms

 Asynchronous communication
 sender sends a message and then continues

 No need to meet in time with receiver

 Message buffered at receiver

 Time uncoupling
 sender and receiver(s) can have independent existences

 Receiver may not exist at the time communication is initiated

Group Communication

 Message is sent to a group
 Message is delivered to all members of the group
 Sender NOT aware of receiver identities
 Abstraction over multicast communication
 Adds group membership, reliability, ordering

 Advantages:
 reliable dissemination of information to potentially large numbers of

clients
 support for collaborative applications(online gaming)
 range of fault-tolerance strategies
 support for system monitoring and management,

 Programming model:
 aGroup.send(aMessage)

Group Communication

 Group is closed if only members of the group may
multicast to it.
 Example: coorperating servers

 Open group allows outside processes communicate
 Example: delivering external events to interested groups(sensor

data)

Closed group Open group

Publish-Subscribe

 Most widely used of all the indirect communication
techniques

 Usually event based
 Event published somewhere – pickup up by all subscribers

 Examples:
 financial information systems

 live feeds

 ubiquitous computing(e.g. location events)

 monitoring applications

Publish-Subscribe

 Publish-Subscribe: Dealing room system

Dealer’s computer

Information
provider

Dealer

External
source

External
source

Information
provider

Dealer

Dealer

Dealer

Notification

Notification

Notification

Notification

Notification
Notification

Notification

Notification

Dealer’s computer

Dealer’s computerDealer’s computer

Notification
Notification

Publish – Subscribe

 Publish-subscribe characteristics:
 Heterogeneity: distributed system that were not designed to

interoperate can be made to work together

 Example: Android based mobile device publishes location info.
Smart home agent subscriber picks up events and acts
accordingly(e.g. turn on heating when user gets home)

 Asynchronicity: Notifications are sent asynchronously to all
subscribers – subscribers decoupled from publisher

 Example: subscriber can be a queue for a particular process.
Queue is accessed by process as and when it can(could be busy at
time of notification).

Publish-Subscribe approaches

 Channel based:
 publishers publish events to named channels. Subscribers

subscribe and receive all events.

 Topic based
 Each event associated with a “topic” or subject. Subscribers

subscribe to a topic and recieve only topic events

 Content based
 Similar to Topic based. Subscription based on range of event

attributes. For example, subscriber might specify author
attribute is “Fintan OToole” and category is “Finance”

Publish-Subscribe Example
Amazon Simple Notification Service(SNS)

 Scalable and flexible publish-subscribe cloud based
service

 Topic-based approach
 A topic is an “access point” – identifying a specific subject or event

type – for publishing messages and allowing clients to subscribe for
notifications

 Topic policies
 Can limit who can publish messages or subscribe
 specifying notification protocols(i.e. HTTP/HTTPS, email, SMS,

SQS)

 Fairly Simple API for developers
 CreateTopic, Subscribe, Publish
 SDKs for all mainstream languages(Java, PHP, c# etc.)
 More in labs....

Publish-Subscribe Example:
PubNub

 Scalable and flexible publish-subscribe
cloud based service

 Topic-based approach
 A topic is an “access point” – identifying a

specific subject or event type – for publishing
messages and allowing clients to subscribe for
notifications

 Also provides for:
 Push Notification
 Storage and Playback (can behave like a Q)
 Online Presence...

 Over 70 SDKs for all mainstream
languages/frameworks (Java, JS, PHP...)

 You used the Node.js one in
the lab.

Message Queues

 Publish-Subscribe is one to many

 Distributed Message Queues is point to point

 Distributes Message Queues often referred to as
Message orientated Middleware(MOM)

 Examples
 MQ Series

 MS MQMS

 Java Messaging Service

Message Queue

 Queues operate First in First out (FIFO)

 Modes of operation: Receive, Poll, Notify

Message Queue Applications

 Messages are persistent
 Stored until consumed(although possible to set “time to live”)

 Supports reliable communication:
 any message sent eventually received (validity)

 message received is identical to the one sent

 no messages are delivered twice (integrity)

 Can be used in conjunction with other middleware to
implement transactions
 Ensure all the steps in a transaction are completed, or the

transaction has no effect at all (‘all or nothing’)

 Message Transformation
 To support heterogeneity, transform messages between formats

Message Queues vs. Buffers

 Queues similar to buffers mentioned earlier in
asynchronous message passing communications

 Buffers are implicitly associated with processes.
 If the process goes down, the buffer will probably go down –

no communication...

 Message queues are separate, third party, entities in
the distributed system.
 Receiving process can go down but queue will stay alive, keep

queuing messages

 Queues facilitate for uncoupled, indirect comms.

References

 Coulouris, Dollimore, Kindberg and Blair,
Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

 Lesson: All About Sockets :
http://docs.oracle.com/javase/tutorial/networking/
sockets/

 Amazon Web Services, SQS:
http://aws.amazon.com/sqs/

