
Microservices
Frank Walsh



What's a Microservice

• Do one thing and one thing well

• Defined service boundaries
• Usually based on business boundaries

• NEVER strays outside well defined boundary
• e.g. contact service does contact stuff
• No function creep
• Small enough but no smaller..
• Small enough for the codebase to be manageable
• Not so small that you have too many moving parts

• Autonomous
• A separate entity, isolated from other services.
• Can change independent of other services



Why Microservices

• Technology Heterogeneity

• Resilience
• Failure should not cascade through the 

system
• Service boundaries can act as a "bulkhead"

• Scaling
• Can scale individual services if required, 

independent of other services in the system.
• Simplified Deployment 

• Changes do not require re-deployment of the 
whole system. Just the changed service(s).



Why Microservices 2

• Aligns with organisational structure
• Small teams focused on smaller codebase alligned to come business 

function (e.g. contacts)

• Composable
• Fine-grained services can be composed into many functions/uses 

without change. 
• Older, "course grained" services typlicallyt useful just in original 

purpose.

• Easy to replace
• Because they're small, replacing a service has less 

risk/overhead.



Service Orientated Architecture (SOA)

• SOA is a mature architectural approach
• Multiple services collaborate to provide 

overall system
• Transparent to user - User percieves just 

one application

• In principle, a good idea
• Promotes reusability, composability

• Loss of popularity attributed to:
• Vendor-driven products (
• Lack of guidance on boundaries
• Not enough granularity

• Overly complex stacks/products that 
required too much expensive tooling



Other Contenders

• Shared Libraries
• Common, reusable code shared as libraries (e.g. the java archive, 

jar file)
• Will always be popular and highly effective for some applications 

(e.g. javascript libraries)
• Not heterogeneous – libraries are written in one language. Cant 

use a java library if I run with python.#

• Modules
• You're already using them via Node Packet Manager
• Will become tightly coupled with your code.



Service Modeling

• A good microservice should exhibit:

• Loose coupling

• Changes to one service should not require changes to another

• High Cohesion

• Related behaviour should be together
• A change to behaviour (e.g. billing process) should be made in 

one place and NOT in lots of places.

• To do this you need to define boundaries



Bounded Context

• Any domain can be broken up into multiple 
bounded contexts
• Each context contains

• Things that are internal to that context(do 
not require communication with other 
contexts)

• Things that are shared wth other contexts

• Each context has an explicit, shared boundary
• You communicate with the context 

though the boundary.
• Analogous to biological cells

• Communication pathways connected via 
membrane receptors.



Example:

• MusicCorp:

• 2 separate contexts: Warehouse and Finance

• Warehouse functions:

• Manage order shipping and returns
• Receive goods

• Finance functions:

• Payroll

• Accounts

• Reporting



External and internal concepts

• Internal concepts only need visibility 
inside a context.

• External concepts need visibility 
outside context:
• Must be provided through an 

interface

• Example
• Finance need to stock levels in 

warehouse for company 
valuations

• Stock Items exposed through a 
Shared Model



External models and Code Modules

• Defining external models helps to:
• Promote loose coupling

• Identify boundaries

• Promote cohesion(where similar, supporting things live)



Think function rather than data

• When a bounded context is defined, think of the capabilities it should 
provide:

• e.g. warehouse should provide capability to get stock level; finance 
provides capability to get end-of-month accounts

• These capabilities may require interchange of data – a shared model.



Course Grained and Fine Grained Contexts

• Initially, easier to define fewer 
course-grained contexts that 
contain smaller, finer grained 
contexts

• It may be required to make them 
high level contexts...



Problem with layered architectures

• Traditionally architectures(and teams) split 
in layered manner:
• Front end web developers
• Back end service/middleware 

developers
• Database admins

• Can become tightly coupled, overly 
complex and brittle

PICTURES
Some times known as onion 
architectures (lots of layers and causes 
tears when cut though.



Integration

• Integrating services is critical to create distributed systems.

• We're looking at Node, but what's the best tools and tech. to 
build/integrate microservices.

• Whatever you choose, the following characteristics:
• Avoid breaking changes

• APIs should be technology agnostic

• Simple APIs 

• Hide implementation details 



The Shared Database

• Commonly used integration approach

• One database/one source of data

• All services reach into the DB for data



Shared Database 

• Easy to implement. Simple in principle

• Issues
• external parties to view and bind to internal implementation details

• tied to a specific technology choice

• business logic needs to be replicated in each client.

• Easy to share data but not so easy to share behaviour (e.g. rules about creating a 
customer/deleting a customer)



Synchronous vs. Asynchronous

• Should communication be synchronous or asynchronous?
• synchronous communication, a call is made to a remote server, which blocks 

until the operation completes.

• asynchronous communication, the caller doesn’t wait for the operation to 
complete before returning, and may not even care whether or not the 
operation completes at all.

• Usually based on two styles of collaboration
• Request/response: A client initiates a request and waits for the response (usually 

synchronous but can be asynscronous)

• event-based: client says this "event" happened and expects other parties to know what to do



Orchestration Vs Choreography

• Creating a customer may involve:
• A new record is created in the loyalty points bank for the customer

• Postal system sends out a welcome pack

• Send a welcome email to the customer

• Implementing this can be via 
Orchestration: central brain controls and drives 
the process
Choreography: Inform each part of its job
let it work out the details.



Orchestration 

• Customer creation via. orchestration



Choreography

• Customer Creation via. Choreography



References

Microservices (nginx): https://www.nginx.com/blog/introduction-to-
microservices/

Building Microservices: https://www.nginx.com/wp-
content/uploads/2015/01/Building_Microservices_Nginx.pdf


