Microservices

Frank Walsh

What's a Microservice

Do one thing and one thing well

Defined service boundaries
e Usually based on business boundaries

NEVER strays outside well defined boundary
* e.g. contact service does contact stuff
No function creep
Small enough but no smaller..
Small enough for the codebase to be manageable

Not so small that you have too many moving parts

Autonomous
* A separate entity, isolated from other services.
e Can change independent of other services

3

t

[0

monolith - single database

| e) =
! b i
\IJ il

Why Microservices

* Technology Heterogeneity

* Resilience

* Failure should not cascade through the
system

e Service boundaries can act as a "bulkhead"

° Scaling—
e Can scale individual services if required,
independent of other services in the system.
* Simplified Deployment
* Changes do not require re-deployment of the
whole system. Just the changed service(s).

Posts
<<ruby>> <<golang>>

Friends

Document
store

Posts

Instance 1 | | Instance 2 | | Instance 3

Pictures
<<java>>

Pictures

Instance 1

Instance 2

Instance 3

Instance 4

Instance 5

Instance 6

Friends

Instance 1

Instance 2

Why Microservices 2

* Aligns with organisational structure
* Small teams focused on smaller codebase alligned to come business
function (e.g. contacts)
 Composable

* Fine-grained services can be composed into many functions/uses
without change.

* Older, "course grained" services typlicallyt useful just in original
purpose.

e Easy to replace

* Because they're small, replacing a service has less
risk/overhead.

Service Orientated Architecture (SOA)

* SOA is a mature architectural approaCh Application Integration with Oracle SOA Suite
* Multiple services collaborate to provide
overall system
* Transparentto user - User percieves just S — R e
one application PORTALS PARTNERS
I I I | |

In principle, a good idea .
* Promotes reusability, composability
* Loss of popularity attributed to:

* Vendor-driven products (| | [| {
* Lack of guidance on boundaries i iy @[@D | 4 J
* Not enough granularity e B B

* Overly complex stacks/products that g+ oo~ nseses oy
* Increased scalability * Little to no custom coding e Standards based integration

required too much expensive tooling e

BPEL BAM MEDIATOR RULES

SOA Suite

SCA QosB

MONITORING

i ADAPTER B2B |

Other Contenders

e Shared Libraries
 Common, reusable code shared as libraries (e.g. the java archive,
jar file)
* Will always be popular and highly effective for some applications
(e.g. javascript libraries)
* Not heterogeneous — libraries are written in one language. Cant
use a java library if | run with python.#

* Modules
* You're already using them via Node Packet Manager
* Will become tightly coupled with your code.

Service Modeling

* A good microservice should exhibit:
* Loose coupling
* Changes to one service should not require changes to another
* High Cohesion
* Related behaviour should be together

* A change to behaviour (e.g. billing process) should be made in
one place and NOT in lots of places.

* To do this you need to define boundaries

Bounded Context

* Any domain can be broken up into multiple
bounded contexts

* Each context contains B Tt
* Things that are internal to that context(do e ey
not require communication with other : ¥ :
contexts ' :
* Things that are shared wth other contexts 5 ¥ :
 Each context has an explicit, shared boundary b ;
* You communicate with the context prodc N cocaion |
though the boundary. tc'g‘?- -

i i
* Analogous to biological cells ivota

 Communication pathways connected via
membrane receptors.

Example:

* MusicCorp:
* 2 separate contexts: Warehouse and Finance

e Warehouse functions:
* Manage order shipping and returns
* Receive goods

* Finance functions:
* Payroll
* Accounts
* Reporting

External and internal concepts

* Internal concepts only need visibility
inside a context.

* External concepts need visibility
outside context:
* Must be provided through an
interface
 Example

* Finance need to stock levels in
warehouse for company
valuations

 Stock Items exposed through a
Shared Model

Warehouse

~
“ Stock item

{ Stock report

Shared model

I General ledger

Finance

Company
valuation

External models and Code Modules

* Defining external models helps to:
* Promote loose coupling
* |dentify boundaries
* Promote cohesion(where similar, supporting things live)

Think function rather than data

* When a bounded context is defined, think of the capabilities it should
provide:

e e.g. warehouse should provide capability to get stock level; finance
provides capability to get end-of-month accounts

* These capabilities may require interchange of data — a shared model.

Course Grained and Fine Grained Contexts

* Initially, easier to define fewer
course-grained contexts that
contain smaller, finer grained
contexts

* It may be required to make them
high level contexts...

Warehouse

Order fulfillment

Goods receiving

Inventory

7 3

Figure 3-2. Microservices represemnting nested bounded contexts hidden inside the ware

Request stock levels

Finance

house

Order fulfillment

Goods receiving

Inventory

Request stock levels

Finance

y %

Problem with layered architectures

* Traditionally architectures(and teams) split
in layered manner:

Monolithic Architecture Microservice Architecture
* Front end web developers
* Back end service/middleware
developers Ry
 Database admins E | N\
* Can become tightly coupled, overly s
complex and brittle H | A YR
PICTURES N O
Some times known as onion -

architectures (lots of layers and causes
tears when cut though.

Apua s|qefo|dap 3j8uls

Integration

* Integrating services is critical to create distributed systems.

 We're looking at Node, but what's the best tools and tech. to
build/integrate microservices.

* Whatever you choose, the following characteristics:
* Avoid breaking changes
* APIs should be technology agnostic
e Simple APIs
* Hide implementation details

The Shared Database

* Commonly used integration approach

* One database/one source of data

e All services reach into the DB for data

‘ Helpdesk I

Registration website

‘ Warehouse I

Customer
DB

Shared Database

* Easy to implement. Simple in principle

* |ssues
* external parties to view and bind to internal implementation details
* tied to a specific technology choice
* business logic needs to be replicated in each client.

* Easy to share data but not so easy to share behaviour (e.g. rules about creating a
customer/deleting a customer)

Synchronous vs. Asynchronous

e Should communication be synchronous or asynchronous?

* synchronous communication, a call is made to a remote server, which blocks
until the operation completes.

e asynchronous communication, the caller doesn’t wait for the operation to
complete before returning, and may not even care whether or not the
operation completes at all.

* Usually based on two styles of collaboration

* Request/response: A client initiates a request and waits for the response (usually
synchronous but can be asynscronous)

* event-based: client says this "event" happened and expects other parties to know what to do

Orchestration Vs Choreography

* Creating a customer may involve:

* A new record is created in the loyalty points bank for the customer

e Postal system sends out a welcome pack

 Send a welcome email to the customer [o e
* Implementing this can be via l
Orchestration: central brain controls and drives Create customer
the process ‘ i ‘
Choreography: Inform each part of its job l
let it work out the details. i e e

Y

[Completed J

Orchestration

e Customer creation via. orchestration

Create points balance

P Loyalty points bank

Send welcome pack ,
Post service

Customer service

Send welcome email

Email service

Choreography

* Customer Creation via. Choreography

Publishes

-

Customer service

S it Loyalty points bank
|
\ 4
Subscribes
Customer created |, _ _ ubscribes Post service
event
A
|
|
b e Email service

References

Microservices (nginx): https://www.nginx.com/blog/introduction-to-
microservices/

Building Microservices: https://www.nginx.com/wp-
content/uploads/2015/01/Building Microservices Nginx.pdf

