Highly Available Distributed
Systems in AWS

O

Agenda

O

 Design for Failure

o Redundancy
o Multiple AZs

 Building for Scale
o Scale up/out
o Elasticity

* SOA and Loose Coupling

o Decoupling components

 Case Study: Transcoding

Design for Failure

FAILURE

It takes a lot of work s

Design for Failure: Failure is Inevitable

O

“Did you try turning it off and on again?”
Roy - The IT Crowd

“Everything fails over time”
Werner Vogels — CTO Amazon

“I'm not a real programmer. I throw together things until it works then I move on.

The real programmers will say ‘yeah it works but you're leaking memory

everywhere. Perhaps we shouﬂl fix that.” I'll just restart Apache every 10 requests.”
Rasmus Lerdorf - creator of PHP

» Most software systems will degrade over time
o Memory leaks, file fragmentation, hardware failure...
» Would be nice if applications could continue to function even if the
underlying physicalphardware fails, is removed or replaced.
o should be impervious to reboots
o Avoid a single point of failure(SPOF)

o ?i;llce everything can go wrong, the path to success is designing for
ailure.

Design for Failure: Traditional Client Server DS

O

Simple, generic 3-teir architecture

—_—

Web Server Database Server A COI‘I‘eSpondlng

=2 ! AWS Architecture
Web Browser

¢
e
pas° *

{2

03

Design for Failure: What could possibly go
wrong...

O

» Single point of failure.

\

[S ' Web server goes down with no
failover...

For web apps, not good enough to wait NS
until somebody notices and reboots... ° / 'S‘cw

Design for Failure: Redundancy

O

e Include more than one web server
e Distribute traffic across all servers
e In AWS use Load Balancer

!
Ve
5ef
5€

oa“’ba

Design for Failure: Health Checks

O

» Want traffic to be directed to “healthy servers” — use
health check.

Configure Health Check

Your load balancer will automatically perform health checks on your EC
check. If an instance fails the health check, it is automatically removed
specific needs.

Ping Protocol HTTP ¥
Ping Port

Ping Path index_html

Advanced Details
Response Timeout seconds oNS

Health Check Interval seconds

Unhealthy Threshold

wa| [=
=
-

®@ ©® © ©

Healthy Threshold

Design for Failure: Availability Zones(AZs)

O

» Don’t put all your eggs in the one basket.

» Don’t have all your servers deployed on same
physical infrastructure

* In AWS, can use multiple AZs to distribute servers

Design for Failure: Amazon AZs

O

US-WEST (Cregon)) EU-WEST (Ireland)

AWS GovCloud (US)

G

ASIA PAC (Tokyo)

ASIA PAC (Sydney)
US-WEST (N. California)

ASIA PAC
(Singapore)

Design for Failure: Redundancy with Multiple

AZS

Add Instances to Load Balancer
The table below lists all your running EC2 Instances. Check the

VPC vpc-aBad75c3 (10.250.0.0/16) | FX_VPC

Instance - Name - State -
@ -d6825be FX WebServer @ stopped
i-70642933 FX DBEServer @ stopped
i-c1511c82 FX NATServer @ stopped
i-4b185608 FX Linux MNode @ stopped

Availability Zone Distribution
1 instance in eu-west-1a

Enable Cross-Zone Load Balancing (i)

» Have a coherent backup and restore strategy for your
data and automate it

 Build process threads that resume on reboot

» Allow the state of the system to re-sync by reloading
messages from queues

» Keep pre-configured and pre-optimized virtual
images to support (2) and (3) on launch/boot

» Avoid in-memory sessions or stateful user context,
move that to data stores.

Building For Scale

“We’re gonna need a bigger beat server...”

Building For Scale:Reactive

Scale up
(fe

S Callng Scale out
Approaches to scaling applications '.
*Scale-up approach:
‘not worrying about the scalable application
architecture and investing heavily in larger and more
powerful computers (vertical scaling) to accommodate
the demand. This approach usually works to a point,
but could either cost a fortune or the demand could out-
grow capacity before the new “big iron” is deployed.
*Scale —out approach:
creating an architecture that scales horizontally and
investing in infrastructure in small chunks.
* often more effective than a scale up approach.
» must predict the demand at regular intervals and
then deploying infrastructure in chunks to meet the
demand.
'may lead to excess capacity (“burning cash”) and
constant manual monitoring (“burning human cycles”).

Building For Scale: Scale up in AWS

» Simple approach.
» High memory/ 10/ CPU/ <<
Storage.

» Easy to change instance
size.

o Will u1t1mately hit limit. i2.4xlarge

m3.xlarge

ml.small

Building For Scale: What about Elasticity

O

» Unlike conventional Enterprise systems, Web Apps
usage is unpredictable.
o E.g. flash crowds from Slashdot effect in early 00s

e Cloud architecture so far .
can handle failure but what/| g sccox "“‘\
about sharp increase of |5 oo bl T e
traffic

* Would be cool if infrastructure could scale up and
scale down to match demand - Elasticity

http://en.wikipedia.org/wiki/Slashdot_effect

Building For Scale:

Understanding Elasticity...

Cost €

Huge Capital
Expenditure

Too much excess capacity : | ,f
“Opportunity Cost” B ”
. | -~
E ”
”
: -~
L ‘::-?“-— You just lost your
7 customers

= == == Predicted demand

Actual demand

........... Scale-up approach

s Automated Elasticity

= = === |raditional Scale-out approach

Timet

>

Building For Scale:
Understanding Elasticity...

Elasticity is one of the fundamental properties of

distributed applications in the cloud

Examples:

infrastructure that used to run daily nightly builds and perform
regression and unit tests every night at 2:00 AM for two hours (often
termed as the “QA/Build box”) was sitting idle for rest of the day. Now,
with elastic infrastructure, one can run nightly builds on boxes that are
“alive” and being paid for only for 2 hours in the night.

An internal trouble ticketing web application that always used to run on
peak capacity (5 servers 24x7x365) to meet the demand during the day
can now be provisioned to run on-demand (5 servers from 9AM to 5 PM
and 2 servers for 5 PM to 9 AM) based on the traffic pattern.

Building For Scale: Auto-scaling in AWS — Scale

cale

. Y

scaling in

10-
down

Building For Scale: Au

Failover gracefully using Elastic IPs: Elastic IP is a static IP that is dynamically re-mappable.
You can quickly remap and failover to another set of servers so that your traffic is routed to the
new servers. It works great when you want to upgrade from old to new versions or in case of
hardware failures

Utilize multiple Availability Zones: Availability Zones are conceptually like logical datacenters.
By deploying your architecture to multiple availability zones, you can ensure highly availability.
Utilize Amazon RDS Multi-AZ [21] deployment functionality to automatically replicate database
updates across multiple Availability Zones.

Maintain an Amazon Machine Image so that you can restore and clone environments very
easily in a different Availability Zone; Maintain multiple Database slaves across Availability
Zones and setup hot replication.

Utilize Amazon CloudWatch (or various real-time open source monitoring tools) to get more
visibility and take appropriate actions in case of hardware failure or performance degradation.

Setup an Auto scaling group to maintain a fixed fleet size so that it replaces unhealthy Amazon
EC2 instances by new ones.

Utilize Amazon EBS and set up cron jobs so that incremental snapshots are automatically
uploaded to Amazon S3 and data is persisted independent of your instances.

Utilize Amazon RDS and set the retention period for backups, so that it can perform automated
backups.

Loose Coupling

Tightly coupled architecture

Component 1

Component 3

Loosely coupled architecture

Component 1

Component 3

- Compute Resources Boundary

Loose Coupling: The Looser the better...

O

» Loose coupling refers to minimising dependencies
between services

* Promotes interface programming (separating
interface from implementation)

» Trend towards REST and generic 1nterfaces(More
later...) =3

 Variable communication patterns

Loose Coupling: In AWS...

O

* Independent components

» Everything is “Black boxed” — just care about
interface

» Decouple interactions

» Can use ‘off the shelf’ services that have redundancy
built-in. — Nice! E.g. SQS

Loose Coupling: Fault tolerant Services...
v Amazon S3 @ v Elastic Load
v Amazon SimpleDB Balancing
v Amazon DynamoDB v AWS IAM
v Amazon CloudFront v AWS Elastic
Beanstalk
v Amazon SWF
v Amazon
v Amazon SQS ElastiCache
v Amazon SNS v Amazon EMR
v Amazon SES v Amazon CloudSearch
v Amazon Routes53

AWS Services

O

Your Application

Amazon Amazon Elastic
RDS MapReduce JobFlows

w
E Amazon
m w Cloud
E E E Front
: 2 a. Amazon 53
=] . e Objects and
-3 w 9 Amazon EC2 Instances Buckets
é s & (On-Demand, Reserved, Spot)
c - H
8| £ |E
E <
-1

Amazon
Virtual Private Cloud

Amazon Global Physical Infrastructure

(Geographical Regions, Availability Zones, Edge Locations)

Example: Business wants to convert (or “transcode”)
customers media files from their source format into
versions that will playback on devices like
smartphones, tablets and PCs...

TRANSCODE PUBLISH&

NOTIFY

AWS Trancoding Architecture

Visibility Timeout

O

» What if a worker takes a message and fails
to complete transcoding...

Default Visibility Timeout

O

« It’s a distributed system, so there's no guarantee that the worker will
actually receive the message
« connection could break, worker could fail, component could fail.
* SQS does not delete the message, and instead, the worker process
deletes the message from the queue after receiving and processing it.
« If message not removed, will become “visible” after timeout...

Configure FX-inboundQ Cancal [x

Queue Settings

Default Visibility Timeout: |31] | | seconds ¥ | Value must be betwesn 0 saconds and
12 hours.

Message Retention Period: |4 | |days v :j;u: must be between T minute and 14

Maximum Message Size: KB Walie miet ha hatwoan 1 and 9RR WA
Recs;lz\oel'«l'lessege ReceiveMessage
equest 1
Delivery Delay: |U | | seconds ¥ val 4 ReceiveMessage ReceiveMessage Reguest

15 Request Request

Receive Message Wait Time: [0 [seconds

Visibility Timeout (in seconds)
Time

Message not Message not
returned returned

Message returned Message returned

Buffering using Qs

O

» Can use queue to buffer requests

Using Cloudwatch and QQ metrics to Autoscale

O

e Web Servers autoscale based on traffic in.

e Build up on SQS can be used to spin up worker
processes to deal with it

References

O

e http://www.allthingsdistributed.com/2012/11/effici
ent-queueing-sqgs.html

e http://www.slideshare.net/AmazonWebServices/tia
rchitecting-highly-available-applications-on-aws

e http://www.informit.com/articles/article.aspx?p=34
9749&seqNum=5

http://www.allthingsdistributed.com/2012/11/efficient-queueing-sqs.html
http://www.slideshare.net/AmazonWebServices/t1architecting-highly-available-applications-on-aws
http://www.informit.com/articles/article.aspx?p=349749&seqNum=5

