
F R A N K W A L S H

R I C H A R D F R I S B Y

Highly Available Distributed
Systems in AWS

Agenda

 Design for Failure

 Redundancy

 Multiple AZs

 Building for Scale

 Scale up/out

 Elasticity

 SOA and Loose Coupling

 Decoupling components

 Case Study: Transcoding

Design for Failure

Design for Failure: Failure is Inevitable

“Did you try turning it off and on again?”
Roy - The IT Crowd

“Everything fails over time”
Werner Vogels – CTO Amazon

“I'm not a real programmer. I throw together things until it works then I move on.
The real programmers will say ‘yeah it works but you're leaking memory
everywhere. Perhaps we should fix that.’ I'll just restart Apache every 10 requests.”

Rasmus Lerdorf - creator of PHP

 Most software systems will degrade over time
 Memory leaks, file fragmentation, hardware failure...

 Would be nice if applications could continue to function even if the
underlying physical hardware fails, is removed or replaced.
 should be impervious to reboots
 Avoid a single point of failure(SPOF)

 Since everything can go wrong, the path to success is designing for
failure.

Design for Failure: Traditional Client Server DS

Simple, generic 3-teir architecture

A corresponding
AWS Architecture

Design for Failure: What could possibly go
wrong…

 Single point of failure.

Web server goes down with no
failover…

For web apps, not good enough to wait
until somebody notices and reboots…

Design for Failure: Redundancy

 Include more than one web server

 Distribute traffic across all servers

 In AWS use Load Balancer

Design for Failure: Health Checks

 Want traffic to be directed to “healthy servers” – use
health check.

Design for Failure: Availability Zones(AZs)

 Don’t put all your eggs in the one basket.

 Don’t have all your servers deployed on same
physical infrastructure

 In AWS, can use multiple AZs to distribute servers

Design for Failure: Amazon AZs

US-WEST (Oregon))
EU-WEST (Ireland)

ASIA PAC (Tokyo)

ASIA PAC

(Singapore)

US-WEST (N. California)

SOUTH AMERICA (Sao Paulo)

US-EAST (Virginia)

AWS GovCloud (US)

ASIA PAC (Sydney)

Design for Failure: Redundancy with Multiple
AZs

Design for Failure: Strategies

 Have a coherent backup and restore strategy for your
data and automate it

 Build process threads that resume on reboot

 Allow the state of the system to re-sync by reloading
messages from queues

 Keep pre-configured and pre-optimized virtual
images to support (2) and (3) on launch/boot

 Avoid in-memory sessions or stateful user context,
move that to data stores.

Building For Scale

“We’re gonna need a bigger boat server…”

•Approaches to scaling applications
•Scale-up approach:

•not worrying about the scalable application
architecture and investing heavily in larger and more
powerful computers (vertical scaling) to accommodate
the demand. This approach usually works to a point,
but could either cost a fortune or the demand could out-
grow capacity before the new “big iron” is deployed.

•Scale –out approach:
•creating an architecture that scales horizontally and
investing in infrastructure in small chunks.
• often more effective than a scale up approach.
• must predict the demand at regular intervals and
then deploying infrastructure in chunks to meet the
demand.
•may lead to excess capacity (“burning cash”) and
constant manual monitoring (“burning human cycles”).

Building For Scale:Reactive
Scaling

Building For Scale: Scale up in AWS

 Simple approach.

 High memory/ IO/ CPU/
Storage.

 Easy to change instance
size.

 Will ultimately hit limit.

Building For Scale: What about Elasticity

 Unlike conventional Enterprise systems, Web Apps
usage is unpredictable.

 E.g. flash crowds from Slashdot effect in early 00s

 Cloud architecture so far
can handle failure but what
about sharp increase of
traffic

 Would be cool if infrastructure could scale up and
scale down to match demand - Elasticity

http://en.wikipedia.org/wiki/Slashdot_effect

Building For Scale:
Understanding Elasticity...

Cost €

•Elasticity is one of the fundamental properties of
distributed applications in the cloud
•Examples:

infrastructure that used to run daily nightly builds and perform
regression and unit tests every night at 2:00 AM for two hours (often
termed as the “QA/Build box”) was sitting idle for rest of the day. Now,
with elastic infrastructure, one can run nightly builds on boxes that are
“alive” and being paid for only for 2 hours in the night.

An internal trouble ticketing web application that always used to run on
peak capacity (5 servers 24x7x365) to meet the demand during the day
can now be provisioned to run on-demand (5 servers from 9AM to 5 PM
and 2 servers for 5 PM to 9 AM) based on the traffic pattern.

Building For Scale:
Understanding Elasticity...

Building For Scale: Auto-scaling in AWS – Scale
up

Building For Scale: Auto-scaling in AWS – Scale
down

AWS: Best Practice

 Failover gracefully using Elastic IPs: Elastic IP is a static IP that is dynamically re-mappable.
You can quickly remap and failover to another set of servers so that your traffic is routed to the
new servers. It works great when you want to upgrade from old to new versions or in case of
hardware failures

 Utilize multiple Availability Zones: Availability Zones are conceptually like logical datacenters.
By deploying your architecture to multiple availability zones, you can ensure highly availability.
Utilize Amazon RDS Multi-AZ [21] deployment functionality to automatically replicate database
updates across multiple Availability Zones.

 Maintain an Amazon Machine Image so that you can restore and clone environments very
easily in a different Availability Zone; Maintain multiple Database slaves across Availability
Zones and setup hot replication.

 Utilize Amazon CloudWatch (or various real-time open source monitoring tools) to get more
visibility and take appropriate actions in case of hardware failure or performance degradation.

 Setup an Auto scaling group to maintain a fixed fleet size so that it replaces unhealthy Amazon
EC2 instances by new ones.

 Utilize Amazon EBS and set up cron jobs so that incremental snapshots are automatically
uploaded to Amazon S3 and data is persisted independent of your instances.

 Utilize Amazon RDS and set the retention period for backups, so that it can perform automated
 backups.

Loose Coupling

Loose Coupling: The Looser the better…

 Loose coupling refers to minimising dependencies
between services

 Promotes interface programming (separating
interface from implementation)

 Trend towards REST and generic interfaces(More
later…)

 Variable communication patterns

Loose Coupling: In AWS…

 Independent components

 Everything is “Black boxed” – just care about
interface

 Decouple interactions

 Can use ‘off the shelf’ services that have redundancy
built-in. – Nice! E.g. SQS

Loose Coupling: Fault tolerant Services…

Amazon S3

Amazon SimpleDB

Amazon DynamoDB

Amazon CloudFront

Amazon SWF

Amazon SQS

Amazon SNS

Amazon SES

Amazon Route53

 Elastic Load
Balancing

AWS IAM

AWS Elastic
Beanstalk

Amazon
ElastiCache

Amazon EMR

Amazon CloudSearch

AWS Services

Our Case Study - Transcoding

Example: Business wants to convert (or “transcode”)
customers media files from their source format into
versions that will playback on devices like
smartphones, tablets and PCs...

AWS Trancoding Architecture

Visibility Timeout

 What if a worker takes a message and fails
to complete transcoding…

Default Visibility Timeout

• It’s a distributed system, so there's no guarantee that the worker will
actually receive the message
• connection could break, worker could fail, component could fail.

• SQS does not delete the message, and instead, the worker process
deletes the message from the queue after receiving and processing it.

• If message not removed, will become “visible” after timeout…

Buffering using Qs

 Can use queue to buffer requests

Using Cloudwatch and Q metrics to Autoscale

 Web Servers autoscale based on traffic in.

 Build up on SQS can be used to spin up worker
processes to deal with it

Scale
workers

References

 http://www.allthingsdistributed.com/2012/11/effici
ent-queueing-sqs.html

 http://www.slideshare.net/AmazonWebServices/t1a
rchitecting-highly-available-applications-on-aws

 http://www.informit.com/articles/article.aspx?p=34
9749&seqNum=5

http://www.allthingsdistributed.com/2012/11/efficient-queueing-sqs.html
http://www.slideshare.net/AmazonWebServices/t1architecting-highly-available-applications-on-aws
http://www.informit.com/articles/article.aspx?p=349749&seqNum=5

