
W E B SE R V I C E C O M M UNI C A T I O N

F R A NK W A L SH

External Data Representation &
Indirect Messaging

Agenda

 External Data Representations

XML

 JSON

 Indirect messaging
 Group Communication

 Publish/Subscribe

 Queueing

External Data Representation

 Information in processes/programs held in Data
Structures
 E.g Array of Strings , Object instances,

 For one program to transmit information to another
across a network, the corresponding data structure must
be “flattened”
 converted to a sequence of bytes before transmission and then

rebuilt
 Sort of analogous to getting an ice cube through a funnel.
 Turn the ice cube to water
 Pass it through the funnel
 Reconstruct the ice cube(freeze the water again)
 How do you reconstruct the ice cube with exactly the same

dimensions?

External Data Representation

 To pass data across a channel between two
computers:

 values are converted to an agreed external format before
transmission. Values converted to the local form on receipt

 The values are transmitted in the sender’s format, together
with an indication of the format used, and the recipient

converts the values if necessary

 An agreed standard for the representation of data
structures and primitive values is called an
external data representation

External Data Representation

 Marshalling

 the process of taking a collection of data items and
assembling them into a form suitable for transmission in a
message

 Unmarshalling
 The reverse of above

 Next we’ll look at 2 external data representation
machanisms
 XML

 JSON

External Data Representation
XML

 eXtensible Markup Language(XML)

 Same heritage as HTML(but XML is NOT HTML)

 XML data items are tagged with ‘markup’ strings

 used to describe the logical structure of the data

 XML has many uses(as you will see later). For now
we confine ourselves to external data representations

 Has many cool features including
 Extensible

 Textual

 Kind of human readable and machine readable...

XML

 Above shows XML definitions of the Person
structure.
 As with xHTML, tags enclose character data.

 Tags : <name>, <place>,<year> data:”Smith”, “London”…

 Namespaces provide a means for scoping names

<person pers:id="123456789" xmlns:pers =
"http://www.cdk5.net/person">

<pers:name> Smith </pers:name>

<pers:place> London </pers:place >

<pers:year> 1984 </pers:year>

</person>

<person id="123456789">

<name>Smith</name>

<place>London</place>

<year>1984</year>

<!-- a comment -->

</person >

namespace

External Data Representation
JSON

 JavaScript Object Notation

 Lightweight text-based open standard designed for
human readable data interchange.

 Can represent simple data structures and associative
arrays.

 Good for serializing and transmitting structured data
across a network

JSON

 JSON is often used in Ajax
techniques

 Often seen as low overhead
alternative to XML

 Application programming
interfaces(APIs) exist for most programming
languages

{
person:{

id:123456789,

name:'Smith',
place:'London',

year:1984

}
}

XML vs. JSON

 XML can include type information(using XML schema)
 XML designed to be “platform independent”, open standard

 most programming languages, including Java, provide processors
for translating between XML and language-level objects

 JSON
 More straight forward than XML

 In XML, same data can be represented several ways(example in
class)
<person id=“123456779” name=“smith” place=“london”
year=“1984” />
Same representation in JSON

 JSON has one straight forward way

Indirect Messaging

Using the “Middleman”

 Communication between processes using an intermediary

 Sender  “The middle-man” Receiver

 No direct coupling

 Up to now, only considered Direct Coupling

 Introduces a degree of rigidity

 Consider…

 What happens if client or server fails during communication in
Direct Coupling?

 Two important properties of intermediary in communication

 Space uncoupling

 Time uncoupling

Space and Time uncoupling

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Time uncoupling vs. Asynchronous Comms

 Asynchronous communication
 sender sends a message and then continues

 No need to meet in time with receiver

 Message buffered at receiver

 Time uncoupling
 sender and receiver(s) can have independent existences

 Receiver may not exist at the time communication is initiated

Group Communication

 Message is sent to a group
 Message is delivered to all members of the group
 Sender NOT aware of receiver identities
 Abstraction over multicast communication
 Adds group membership, reliability, ordering

 Advantages:
 reliable dissemination of information to potentially large numbers of

clients
 support for collaborative applications(online gaming)
 range of fault-tolerance strategies
 support for system monitoring and management,

 Programming model:
 aGroup.send(aMessage)

Group Communication

 Group is closed if only members of the group may
multicast to it.
 Example: coorperating servers

 Open group allows outside processes communicate
 Example: delivering external events to interested groups(sensor

data)

Closed group Open group

Publish-Subscribe

 Most widely used of all the indirect communication
techniques

 Usually event based
 Event published somewhere – pickup up by all subscribers

 Examples:
 financial information systems

 live feeds

 ubiquitous computing(e.g. location events)

 monitoring applications

Publish-Subscribe

 Publish-Subscribe: Dealing room system

Dealer’s computer

Information
provider

Dealer

External
source

External
source

Information
provider

Dealer

Dealer

Dealer

Notification

Notification

Notification

Notification

Notification
Notification

Notification

Notification

Dealer’s computer

Dealer’s computerDealer’s computer

Notification
Notification

Publish – Subscribe

 Publish-subscribe characteristics:
 Heterogeneity: distributed system that were not designed to

interoperate can be made to work together

 Example: Android based mobile device publishes location info.
Smart home agent subscriber picks up events and acts
accordingly(e.g. turn on heating when user gets home)

 Asynchronicity: Notifications are sent asynchronously to all
subscribers – subscribers decoupled from publisher

 Example: subscriber can be a queue for a particular process.
Queue is accessed by process as and when it can(could be busy at
time of notification).

Publish-Subscribe approaches

 Channel based:
 publishers publish events to named channels. Subscribers

subscribe and receive all events.

 Topic based
 Each event associated with a “topic” or subject. Subscribers

subscribe to a topic and recieve only topic events

 Content based
 Similar to Topic based. Subscription based on range of event

attributes. For example, subscriber might specify author
attribute is “Fintan OToole” and category is “Finance”

Publish-Subscribe Example
Amazon Simple Notification Service(SNS)

 Scalable and flexible publish-subscribe cloud based
service

 Topic-based approach
 A topic is an “access point” – identifying a specific subject or event

type – for publishing messages and allowing clients to subscribe for
notifications

 Topic policies
 Can limit who can publish messages or subscribe
 specifying notification protocols(i.e. HTTP/HTTPS, email, SMS,

SQS)

 Fairly Simple API for developers
 CreateTopic, Subscribe, Publish
 SDKs for all mainstream languages(Java, PHP, c# etc.)
 More in labs....

Publish-Subscribe Example:
PubNub

 Scalable and flexible publish-subscribe
cloud based service

 Topic-based approach
 A topic is an “access point” – identifying a

specific subject or event type – for publishing
messages and allowing clients to subscribe for
notifications

 Also provides for:
 Push Notification
 Storage and Playback (can behave like a Q)
 Online Presence...

 Over 70 SDKs for all mainstream
languages/frameworks (Java, JS, PHP...)

 You used the Node.js one in
the lab.

Message Queues

 Publish-Subscribe is one to many

 Distributed Message Queues is point to point

 Distributes Message Queues often referred to as
Message orientated Middleware(MOM)

 Examples
 MQ Series

 MS MQMS

 Java Messaging Service

Message Queue

 Queues operate First in First out (FIFO)

 Modes of operation: Receive, Poll, Notify

Message Queue Applications

 Messages are persistent
 Stored until consumed(although possible to set “time to live”)

 Supports reliable communication:
 any message sent eventually received (validity)

 message received is identical to the one sent

 no messages are delivered twice (integrity)

 Can be used in conjunction with other middleware to
implement transactions
 Ensure all the steps in a transaction are completed, or the

transaction has no effect at all (‘all or nothing’)

 Message Transformation
 To support heterogeneity, transform messages between formats

Message Queues vs. Buffers

 Queues similar to buffers mentioned earlier in
asynchronous message passing communications

 Buffers are implicitly associated with processes.
 If the process goes down, the buffer will probably go down –

no communication...

 Message queues are separate, third party, entities in
the distributed system.
 Receiving process can go down but queue will stay alive, keep

queuing messages

 Queues facilitate for uncoupled, indirect comms.

References

 Coulouris, Dollimore, Kindberg and Blair,
Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

 Lesson: All About Sockets :
http://docs.oracle.com/javase/tutorial/networking/
sockets/

 Amazon Web Services, SQS:
http://aws.amazon.com/sqs/

