External Data Representation &
Indirect Messaging

O

Agenda

O

» External Data Representations
o XML

o JSON

 Indirect messaging

o Group Communication
o Publish/Subscribe
o Queueing

External Data Representation

O

» Information in processes/programs held in Data
Structures
o E.g Array of Strings , Objectinstances,

* For one program to transmit infoymation to another
across a network, the corresponding data structure must
be “flattened”

o converted to a sequence of bytes before transmission and then

rebuilt

» Sort of analogous to getting an ice cube through a funnel.
o Turn theice cube to water
o Pass it through the funnel
o Reconstructthe ice cube(freeze the water again)

o How do you reconstructthe ice cube with exactly the same
dimensions?

External Data Representation

O

» To pass data across a channel between two
computers:

o values are converted to an agreed external format before
transmission. Values converted to the local form on receipt

o The values are transmitted in the sender’s format, together
with an indication of the format used, and the recipient
converts the values if necessary

» An agreed standard for the representation of data
structures and primitive values is called an
external data representation

External Data Representation

e Marshalling

o the process of taking a collection of data items and
assembling them into a form suitable for transmission in a
message

e Unmarshalling

o The reverse of above

» Next we'll look at 2 external data representation
machanisms
o XML
o JSON

External Data Representation
XML

O

» eXtensible Markup Language(XML)
» Same heritage as HTML(but XML is NOT HTML)

XML data items are tagged with ‘markup’ strings
o used to describe the logical structure of the data

XML has many uses(as you will see later). For now
we confine ourselves to external data representations

» Has many cool features including
o Extensible

o Textual
o Kind of human readable and machine readable...

AMLL]
@ namespace

<person id="123456789"> <person pers:id="123456789" Xmlﬁé:pers =
<name>Smith</name> |"http://www.cdk5.net/person">
<place>London</place> <pers:name> Smith </pers:name>
<year>1984</year> <pers:place> London </pers:place >
<!-- a comment --> <pers:year> 1984 </pers:year>
</person > </person>

» Above shows XML definitions of the Person
structure.
o As with xHTML, tags enclose character data.
o Tags: <name>, <place>,<year> data:”Smith”,“London”...

» Namespaces provide a means for scoping names

» JavaScript Object Notation

» Lightweight text-based open standard designed for
human readable data interchange.

» Can represent simple data structures and associative
arrays.

» Good for serializing and transmitting structured data
across a network

JSON
» JSON is often used in Ajax { person:{

techniques id:123456789,

name:'Smith’,

o Often seen as low overhead place:'London’,

. year:1984
alternative to XML } }

» Application programming

interfaces(APIs) exist for most programming
languages

XML vs. JSON

O

e XML can include type information(using XML schema)
o XML designed to be “platform independent”, open standard

o most programming languages, including Java, provide processors
for translating between XML and language-level objects

* JSON
o More straight forward than XML

o In XML, same data can be represented several ways(example in
class)
<person id=“123456779” name="“smith” place=“london”
year=“1984" />
Same representationin JSON

o JSON has one straight forward way

Indirect Messaging

Using the “Middleman”

O

e Communication between processes using an intermediary
» Sender 2 “The middle-man” - Receiver
» No direct coupling

e Up to now, only considered Direct Coupling
* Introducesa degree of rigidity

e Consider...

» What happensif client or server fails during communicationin
Direct Coupling?

e Two important properties of intermediaryin communication
* Space uncoupling

» Time uncoupling

Space and Time uncoupling

O

Time-coupled Time-uncoupled

Properties: Communication directed = Properties: Communication directed
towards a given receiver or receivers; = towards a given receiver or receivers;
receiver(s) must exist at that moment in = sender(s) and receiver(s) can have
time independent lifetimes

Examples: Message passing, remote Examples: See Exercise 15.3
invocation (see Chapters 4 and 5)

Space coupling

Properties: Sender does not need to Properties: Sender does not need to know
know the identity of the receiver(s); the identity of the receiver(s); sender(s)
receiver(s) must exist at that moment in = and receiver(s) can have independent
time lifetimes

Examples: IP multicast (see Chapter 4) Examples: Most indirect communication
paradigms covered in this chapter

Space uncoupling

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Time uncoupling vs. Asynchronous Comms

O

» Asynchronous communication
o sender sends a message and then continues

o No need to meet in time with receiver
o Message buffered at receiver

* Time uncoupling
o sender and receiver(s) can have independent existences

o Receiver may not exist at the time communication is initiated

Group Communication

* Message 1s sent to a group
» Message is delivered to all members of the group
* Sender NOT aware of receiver identities

e Abstraction over multicast communication
o Adds group membership, reliability, ordering

» Advantages:

e r%liable dissemination of information to potentiallylarge numbers of
clients

o support for collaborative applications(online gaming)
o range of fault-tolerance strategies
o support for system monitoring and management,

e Programming model:
o aGroup.send(aMessage)

Group Communication

O

O @)
\ / # \
P O
O O /
Closed group \L Open group
A
X
@) @)

e Group is closed if only members of the group may
multicast to it.
o Example: coorperating servers

* Open group allows outside processes communicate

® gxar?ple: delivering external eventsto interested groups(sensor
ata

Publish-Subscribe

O

» Most widely used of all the indirect communication
techniques

» Usually event based
o Event published somewhere — pickup up by all subscribers

» Examples:
o financial information systems
o live feeds
o ubiquitous computing(e.g.location events)
o monitoring applications

Dealer’'s computer External Dealer’'s computer
source
Qler Notification v Notification ealer
] [~ O\
e‘ Notification | L) Information _'

— providef Notification >

Notification

Notification otification

Dealer’'s computer

Information
provider
Notification ‘ —
Dealer e‘ Notification

External
source

Publish-Subscribe: Dealing room system

Dealer’s computer
Notification

Dealer

Publish — Subscribe

O

e Publish-subscribe characteristics:

o Heterogeneity: distributed system that were not designed to
interoperate can be made to work together
= Example: Android based mobile device publishes location info.
Smart home agent subscriber picks up events and acts
accordingly(e.g. turn on heating when user gets home)
o Asynchronicity: Notifications are sent asynchronously to all
subscribers — subscribers decoupled from publisher
= Example: subscriber can be a queue for a particular process.

Queue is accessed by process as and when it can(could be busy at
time of notification).

Publish-Subscribe approaches

e Channel based:

o publishers publish events to named channels. Subscribers
subscribe and receive all events.
» Topic based
o Each event associated with a “topic” or subject. Subscribers
subscribe to a topic and recieve only topic events
» Content based

o Similar to Topic based. Subscription based on range of event
attributes. For example, subscriber might specify author
attribute is “Fintan OToole” and categoryis “Finance”

Publish-Subscribe Example
Amazon Simple Notification Service(SNS)

O

 Scalable and flexible publish-subscribe cloud based
service

o Topic—based approach

o A topicis an “access point” — identifying a specific subject or event
type — for publishing messages and allowing clients to subscribe for
notifications

» Topic policies

o Can limit who can publish messages or subscribe

® g%esc)ifying notification protocols(i.e. HTTP/HTTPS, email, SMS,
 Fairly Simple API for developers

o CreateTopic, Subscribe, Publish

o SDKs for all mainstream languages(Java, PHP, c# etc.)

o More in labs....

Publish-Subscribe Example:
PubNub

O

e Scalable and flexible publish-subscribe
cloud based service

» Topic-based approach

O Atopicis an “access point” — identifying a
specific subject or event type — for %ubhshlng
messages and allowing clients to subscribe for
notifications

e Also provides for:

o Push Notification

o Storage and Playback (can behave like a Q)

O Online Presence...

» Over 70 SDKs for all mainstream
languages/frameworks (Java, JS, PHP...)

* You used the Node.js one in
the lab.

Message Queues

O

» Publish-Subscribe is one to many

» Distributed Message Queues is point to point

» Distributes Message Queues often referred to as
Message orientated Middleware(MOM)

» Examples
o MQ Series
o MSMQMS
o Java Messaging Service

Message Queue

O

Producers Message queue system Consumers

Receive
=l / A—Q /Q
|
%
e — e Po//{)
Qseﬂd\ il
e \\Q

\ A

* Queues operate First in First out (FIFO)
» Modes of operation: Receive, Poll, Notify

Message Queue Applications

» Messages are persistent

o Stored until consumed(although possible to set “time to live™)

» Supports reliable communication:
o any message sent eventuallyreceived (validity)
o message received is identical to the one sent
o no messages are delivered twice (integrity)

» Can be used in conjunction with other middleware to
implement transactions

o Ensure all the stepsin a transaction are completed, or the
transaction has no effect at all (‘all or nothing’)

» Message Transformation
o To support heterogeneity, transform messages between formats

Message Queues vs. Buffers

O

* Queues similar to buffers mentioned earlier in
asynchronous message passing communications

» Buffers are implicitly associated with processes.

o If the process goes down, the buffer will probably go down —
no communication...

» Message queues are separate, third party, entities in
the distributed system.

o Receiving process can go down but queue will stay alive, keep
queuing messages

* Queues facilitate for uncoupled, indirect comms.

References

O

e Coulouris, Dollimore, Kindberg and Blair,
Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

» Lesson: All About Sockets :
http://docs.oracle.com/javase/tutorial /networking/
sockets/

» Amazon Web Services, SQS:
http://aws.amazon.com/sqs/

