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External Data Representation

 Information in processes/programs held in Data 
Structures
 E.g Array of Strings , Object instances,

 For one program to transmit information to another 
across a network, the corresponding data structure must 
be “flattened” 
 converted to a sequence of bytes before transmission and then 

rebuilt
 Sort of analogous to getting an ice cube through a funnel.
 Turn the ice cube to water
 Pass it through the funnel
 Reconstruct the ice cube(freeze the water again)
 How do you reconstruct the ice cube with exactly the same 

dimensions?



External Data Representation

 To pass data across a channel between two 
computers:

 values are converted to an agreed external format before 
transmission. Values converted to the local form on receipt 

 The values are transmitted in the sender’s format, together 
with an indication of the format used, and the recipient 

converts the values if necessary

 An agreed standard for the representation of data 
structures and primitive values is called an 
external data representation



External Data Representation

 Marshalling

 the process of taking a collection of data items and 
assembling them into a form suitable for transmission in a 
message

 Unmarshalling
 The reverse of above

 Next we’ll look at 2 external data representation 
machanisms
 XML

 JSON



External Data Representation
XML

 eXtensible Markup Language(XML)

 Same heritage as HTML(but XML is NOT HTML)

 XML data items are tagged with ‘markup’ strings

 used to describe the logical structure of the data

 XML has many uses(as you will see later). For now 
we confine ourselves to external data representations

 Has many cool features including
 Extensible

 Textual

 Kind of human readable and machine readable...



XML

 Above shows XML definitions of the Person 
structure.
 As with xHTML, tags enclose character data.

 Tags : <name>, <place>,<year> data:”Smith”, “London”…

 Namespaces provide a means for scoping names

<person pers:id="123456789" xmlns:pers = 
"http://www.cdk5.net/person">

<pers:name> Smith </pers:name>

<pers:place> London </pers:place >

<pers:year> 1984 </pers:year>

</person>

<person id="123456789">

<name>Smith</name>

<place>London</place>

<year>1984</year>

<!-- a comment -->

</person >

namespace



External Data Representation
JSON

 JavaScript Object Notation

 Lightweight text-based open standard designed for 
human readable data interchange.

 Can represent simple data structures and associative 
arrays.

 Good for serializing and transmitting structured data 
across a network



JSON

 JSON is often used in Ajax
techniques

 Often seen as low overhead 
alternative to XML

 Application programming 
interfaces(APIs) exist for most programming 
languages

{
person:{

id:123456789,

name:'Smith',
place:'London',

year:1984

}
}



XML vs. JSON

 XML can include type information(using XML schema)
 XML designed to be “platform independent”, open standard

 most programming languages, including Java, provide processors 
for translating between XML and language-level objects

 JSON 
 More straight forward than XML

 In XML, same data can be represented several ways(example in 
class)
<person id=“123456779” name=“smith” place=“london” 
year=“1984” /> 
Same representation in JSON

 JSON has one straight forward way



Indirect Messaging



Using the “Middleman”

 Communication between processes using an intermediary

 Sender  “The middle-man” Receiver

 No direct coupling

 Up to now, only considered Direct Coupling

 Introduces a degree of rigidity

 Consider…

 What happens if client or server fails during communication in 
Direct Coupling?

 Two important properties of intermediary in communication

 Space uncoupling

 Time uncoupling



Space and Time uncoupling
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Time uncoupling vs. Asynchronous Comms

 Asynchronous communication
 sender sends a message and then continues 

 No need to meet in time with receiver

 Message buffered at receiver

 Time uncoupling
 sender and receiver(s) can have independent existences

 Receiver may not exist at the time communication is initiated



Group Communication

 Message is sent to a group
 Message is delivered to all members of the group
 Sender NOT aware of receiver identities
 Abstraction over multicast communication
 Adds group membership, reliability, ordering

 Advantages:
 reliable dissemination of information to potentially large numbers of 

clients
 support for collaborative applications(online gaming)
 range of fault-tolerance strategies
 support for system monitoring and management,

 Programming model:
 aGroup.send(aMessage)



Group Communication

 Group is closed if only members of the group may 
multicast to it.
 Example: coorperating servers

 Open group allows outside processes communicate
 Example: delivering external events to interested groups(sensor 

data)

Closed group Open group



Publish-Subscribe

 Most widely used of all the indirect communication 
techniques

 Usually event based
 Event published somewhere – pickup up by all subscribers

 Examples:
 financial information systems

 live feeds

 ubiquitous computing(e.g. location events)

 monitoring applications



Publish-Subscribe

 Publish-Subscribe: Dealing room system
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Publish – Subscribe

 Publish-subscribe characteristics:
 Heterogeneity: distributed system that were not designed to 

interoperate can be made to work together

 Example: Android based mobile device publishes location info. 
Smart home agent subscriber picks up events and acts 
accordingly(e.g. turn on heating when user gets home)

 Asynchronicity: Notifications are sent asynchronously to all 
subscribers – subscribers decoupled from publisher

 Example: subscriber can be a queue for a particular process. 
Queue is accessed by process as and when it can(could be busy at 
time of notification).  



Publish-Subscribe approaches 

 Channel based:
 publishers publish events to named channels. Subscribers 

subscribe and receive all events.

 Topic based
 Each event associated with a “topic” or subject. Subscribers 

subscribe to a topic and recieve only topic events 

 Content based
 Similar to Topic based. Subscription based on range of event 

attributes. For example, subscriber might specify author 
attribute is “Fintan OToole” and category is “Finance”



Publish-Subscribe Example
Amazon Simple Notification Service(SNS)

 Scalable and flexible publish-subscribe cloud based 
service

 Topic-based approach
 A topic is an “access point” – identifying a specific subject or event 

type – for publishing messages and allowing clients to subscribe for 
notifications

 Topic policies
 Can limit who can publish messages or subscribe
 specifying notification protocols(i.e. HTTP/HTTPS, email, SMS, 

SQS)

 Fairly Simple API for developers
 CreateTopic, Subscribe, Publish
 SDKs for all mainstream languages(Java, PHP, c# etc.)
 More in labs....



Publish-Subscribe Example:
PubNub

 Scalable and flexible publish-subscribe 
cloud based service

 Topic-based approach
 A topic is an “access point” – identifying a 

specific subject or event type – for publishing 
messages and allowing clients to subscribe for 
notifications

 Also provides for:
 Push Notification
 Storage and Playback (can behave like a Q)
 Online Presence...

 Over 70 SDKs for all mainstream 
languages/frameworks (Java, JS, PHP...)

 You used the Node.js one in 
the lab. 



Message Queues

 Publish-Subscribe is one to many

 Distributed Message Queues is point to point

 Distributes Message Queues often referred to as 
Message orientated Middleware(MOM)

 Examples
 MQ Series

 MS MQMS

 Java Messaging Service



Message Queue

 Queues operate First in First out (FIFO) 

 Modes of operation: Receive, Poll, Notify



Message Queue Applications

 Messages are persistent
 Stored until consumed(although possible to set “time to live”)

 Supports reliable communication:
 any message sent eventually received (validity)

 message received is identical to the one sent

 no messages are delivered twice (integrity)

 Can be used in conjunction with other middleware to 
implement transactions
 Ensure all the steps in a transaction are completed, or the 

transaction has no effect at all (‘all or nothing’)

 Message Transformation
 To support heterogeneity, transform messages between formats



Message Queues vs. Buffers

 Queues similar to buffers mentioned earlier in 
asynchronous message passing communications

 Buffers are implicitly associated with processes.
 If the process goes down, the buffer will probably go down –

no communication...

 Message queues are separate, third party, entities in 
the distributed system.
 Receiving process can go down but queue will stay alive, keep 

queuing messages

 Queues facilitate for uncoupled, indirect comms. 
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