
EGR 597: Internet of Things: Standards, Protocols, and
Applications

Lab 4: Thermistor and BME680 Temperature and Humidity
Sensor

Central Michigan University
2018-2019

Objective: The objective of this lab is to learn the calibration process of thermistors and
using digital temperature sensors.

In part 1 we will learn the fundamental principles of a negative temperature coefficient
thermistor and how to calibrate them. In part 2 we will learn to use BME680, a digital
temperature and humidity sensor.

Materials Needed:
1) Raspberry Pi 3
2) ADC chip (ADS1115)
3) Prototyping breadboard
4) Thermistor
5) 10KΩ resistor
6) Thermometer
7) Beaker
8) Hot plate
9) Ice
10) BME680
11) Jumper wires.

Part 1: Thermistor
Thermistors are resistors that are thermally sensitive; their prime function is to exhibit

a large, precise change in electrical resistance when subjected to a corresponding
change in temperature. Temperature rise or fall changes the resistance of thermistors.
There are two types of thermistors in terms of characteristics, namely PTC (Positive
Temperature Coefficient) and NTC (Negative Temperature Coefficient) thermistors. In
case of a NTC thermistor the resistance increases as the temperature decreases and
vice-versa whereas in case of a PTC thermistor the resistance increases as the
temperature increases and vice-versa. There are many kinds of thermistors depending
on the application. Physically they might look very different but have the same
operational principle. Fig. 2 shows a waterproof thermistor that we will be using during
the lab. You can find more fundamental information about Thermistors at
https://en.wikipedia.org/wiki/Thermistor

http://www.littelfuse.com/products/Temperature-Sensors.aspx
https://en.wikipedia.org/wiki/Thermistor

Fig. 1. Different types of thermistors

Fig. 2. Waterproof Thermistor

Now you know the thermistor changes its resistance depending on the temperature
but how can we know the value of temperature from the resistance? Let’s say for
example, in room temperature an NTC thermistor’s resistance is 1 kΩ and when we heat
it up, its resistance drops to 500 Ω. However, we do not know the temperature of
thermistor at this time. Accordingly, we need to calibrate the thermistor to identify the
relationship between temperature and resistance of the thermistor. Calibration is an
unavoidable process to keep your equipment or sensors accurate and precise over time.
It is also used to characterize unknown sensors. The formal definition of calibration by
the International Bureau of Weights and Measures (BIPM) is the following: “Operation
that, under specified conditions, in a first step, establishes a relation between the
quantity values with measurement uncertainties provided by measurement standards
and corresponding indications with associated measurement uncertainties (of the
calibrated instrument or secondary standard) and, in a second step, uses this

information to establish a relation for obtaining a measurement result from an
indication.” So we will calibrate our thermistor using a thermometer to establish a
relation between temperature and the corresponding resistance of the thermistor.

In the next few steps we will take voltage measurements (the voltage across the
thermistor directly corresponds to the changes in resistance of the thermistor) across a
wide range of temperatures (from sub zero temperatures to 212℉), draw a
characteristics curve in Excel and derive an equation from the curve. We can then use
that equation to get the temperature from the resistance value of the thermistor.

Step 1: Take a 10KΩ resistor and make a voltage divider circuit with the thermistor and
power it with 3.3V as shown in figure 2. Do note that thermistors don’t have any polarity
(similar to conventional resistors).

Fig. 3. Thermistor Calibration Circuit

Step 2: Put water and ice in a beaker, insert the thermistor in the water, and heat the
water on a hot plate. Make sure the thermistor wire is not touching the hot plate surface.
Take readings of the temperature of the water with a thermometer and the associated
voltage. (If you do not have a multimeter, replace the LDR in lab-03 with thermistor, and
record the digital output of ADC). Take about twenty readings as the water boils.

Step 3: Enter the data you collected into an excel sheet with the voltage readings in the
first column and the temperature readings in the second. Click the insert tab, select the
data set and make a graph with it by selecting the “scatter with smooth lines” option.

Fig. 4: Selecting “Scatter with Straight Lines and Markers”

You should see a graph drawn on the excel sheet. Acquire the equation from the curve
by selecting the curve, right clicking, selecting “add trend line”, and then scrolling down
in the menu and check the box next to “Display equation on chart” shown on Fig. 5.

Fig. 5. Check “Display Equation on Chart”

Now you should see an equation next to the graph just like in Figure 6. Do note that the
calibration equation could be different across thermistors.

Fig. 6. Voltage vs Temperature Graph

Now that you have the equation, you can read the voltage across the thermistor with an
ADC chip connected to the Pi and plug that into the equation to find current temperature.

Part 2: BME680 Temperature, Pressure and Humidity Sensor

Now we are going to learn how to interface BME680 with our Raspberry Pi. Let’s first
learn what this sensor is. Pictured in Fig. 7 is a BME680 sensor.

Fig. 7. BME680 Sensor

BME680 is an environmental sensor made by Bosch Sensortec. It can sense temperature,
humidity, barometric pressure, and VOC (Volatile Organic Compounds) gas, all integrated
into one low power, 8 pin, monolithic chip. It can communicate via SPI or I2C. If you don’t
change the communication method, it defaults to I2C. The sensor is fairly accurate and
since pressure changes with altitude, you can also use this sensor as an altimeter. If you
want to know more about this sensor, here’s a link to its datasheet:
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-
00.pdf

https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-00.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-00.pdf

For our experiments, we will use a sensor module by Adafruit as in Fig. 8 which handles
the supply voltage requirements and communication level shiftings so that we can use
this sensor without worrying about all that.

Fig. 8. BME680 Sensor Module
There are 7 pins on the module. Namely,
VIN - Voltage input pin
3Vo - 3.3V output
GND - Ground pin
SCK - SPI Clock pin, also the clock pin for I2C
SDO - Serial Data Out pin
SDI - Serial Data In pin, also the data pin for I2C
CS - Chip Select Pin for SPI communication

For our experiment we will use I2C communication, so we just need to VIN, GND, SCK
and SDI pins. We can leave the remaining pins disconnected. Now let’s connect this
sensor with the Raspberry Pi as in Fig. 9.

Pi 3V3 sensor VIN
Pi GND sensor GND
Pi SCL sensor SCK
Pi SDA sensor SDI

Fig. 9. Wiring schematic for BME680 and Raspberry Pi

The Software:
We are going to use a python library from Pimoroni. To install this library open a terminal
window and enter the following command. Press enter after every command.

git clone https://github.com/pimoroni/bme680-python.git

cd bme680-python/library

sudo python setup.py install

cd ~

Now we have the library installed on our Pi. Let’s try out the sensor with a simple code
that will give us the ambient temperature in degree fahrenheit, the atmospheric pressure
in hPa and the relative humidity. Open a new text file and save it with a name
“bme680_test.py” and paste the following code.

The Code:

#!/usr/bin/env python
import bme680
import time

https://github.com/pimoroni/bme680-python.git

print("""Display Temperature, Pressure and Humidity

Press Ctrl+C to exit

""")

try:
 sensor = bme680.BME680(bme680.I2C_ADDR_PRIMARY)
except IOError:
 sensor = bme680.BME680(bme680.I2C_ADDR_SECONDARY)

sensor.set_humidity_oversample(bme680.OS_2X)
sensor.set_pressure_oversample(bme680.OS_4X)
sensor.set_temperature_oversample(bme680.OS_8X)
sensor.set_filter(bme680.FILTER_SIZE_3)

try:
 while True:
 if sensor.get_sensor_data():

 output = '{0:.2f} F, {1:.2f} hPa, {2:.3f} %RH'.format(
 (1.8* sensor.data.temperature) + 32.0,
 sensor.data.pressure,
 sensor.data.humidity)

 print(output)

time.sleep(2)

except KeyboardInterrupt:
 pass

Type the following command in the terminal and you should start seeing temperature,
pressure and humidity values popping up on the screen every two seconds. Press Ctrl +
C to quit the program.

sudo python bme680_test.py

Lab Report:
Include the following in your lab report

1. Lessons learned

2. Schematics and hookups.

3. Does condensation have any effect on the humidity readings? If so, what can be
done to minimize this effect?

4. What are the different interfacing modes for BME 680? What mode was utilized in
the lab, and how would you update the code to interface in a different mode?

5. What is the operating range of the BME 680 for temperature, pressure, and
humidity?

6. What is the accuracy of the BME 680 for temperature, pressure, and humidity?

7. Name three different applications where a combination of any two parameters
(temperature, pressure, humidity) are necessary for efficient operation.

8. The datasheet mentions a specification of “Response time to complete 63% of
step.” Identify the significance of this specification.

9. Based on information in the datasheet, calculate (show work) the power
consumption of the sensor operating at 3.3V at a rate of 10Hz. Also, how would
you estimate the energy consumed?

