
Socket Programming

K. Yelamarthi & F. Walsh
Centra l Michigan Universi ty

Mt Pleasant, MI

1

Sockets Interface
 Important to communicate on the network

 Programming interface to perform network communication

 Can be used in many languages

 Based on client/server programming model

2

Sockets on a Client
Creating a generic network client:
Create a socket
Connect socket to server
Send some data (a request)
Receive some data (a response)
Close the socket

Could repeat or stop based on the application

3

Create a Socket
import socket
mysock = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

Need to import the socket package
socket.socket() creates the socket
AF_INET declares the address family internet (IPv4)

AF_INET6  IPv6
AF_IRDA  Infrared
AF_BTH  Bluetooth
AF_APPLETALK  Apple Talk

More information at
https://msdn.microsoft.com/en-us/library/windows/desktop/ms740506(v=vs.85).aspx

4

https://msdn.microsoft.com/en-us/library/windows/desktop/ms740506(v=vs.85).aspx

Create a Socket
import socket
mysock = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

 SOCK_STREAM indicates that we are using TCP (connection-based)
 TCP has more overhead, but is reliable communication method

 SOCK_DGRAM  supports datagrams, which are connectionless, unreliable buffers of
fixed max length

5

Connect Socket to Server
host = socket.gethostbyname(“www.google.com”)

or
host = ‘IP Address of server’
mysock.connect(host, 80)

 Need a host to connect to
 Host is an IP address, but you may only have the domain
 gethostbyname() performs DNS lookup
 connect() creates the connection
 Port is second argument, 80 is web traffic

6

Sending Data on a Socket
message = “GET / HTTP/1.1\ r\ n\ r \ n”
mysock.sendall(message)

Message string is an HTTP GET request
Could send any data

 \r\n  carriage returns and line feeds

sendall()  sends the data and tries until it succeeds

7

Receiving Data on a Socket
data = mysock.recv(1000)

 recv() returns data on the socket
Blocking wait, by default (it will sit there until it receives the response)

 Argument is the maximum number of bytes to receive
 Buffer size is optional in Python, but required in other languages such as
C

mysock.close()

Closes the socket

8

Sockets on the Server
Server needs to wait for requests
 Create a socket
 Bind the socket to an IP address and port
 Listen for a connection
 Accept the connection
 Receive the request
 Send the response

9

Creating and Binding a Socket
mysock=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
mysock.bind(“”, 80)

 bind() binds the socket to a port
 First argument “” is the host, it is empty
 Can receive from any host

 80 refers to HTTP port, but can be changed to any other port

10

Listening and Accepting a Connection
mysock.listen(5)
conn, addr=mysock.accept()

listen() starts listening for a connect()
Argument is backlog, number of requests allowed to wait for service

accept() accepts a connection request
Returns a connection (for sending/receiving), and an address (IP, port)

11

Sending - Client
import socket
count=0
HOST = 'IP address of server' # The remote host
PORT = 50007 # The same port as used by the server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
while count < 1000:

s.sendall('Hello, world')
data = s.recv(1024)
print data
count += 1

s.close

12

Receiving - Server
import socket
HOST = '' # Symbolic name meaning all available interfaces
PORT = 50007 # Arbitrary non-privileged port
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((HOST, PORT))
s.listen(1)
conn, addr = s.accept()
print 'Connected by', addr
while 1:
 data = conn.recv(1024)

print data
 if not data: break
 conn.sendall(data)
conn.close()

13

Task 1
 Connect the temperature sensor (TMP36) to the
Raspberry Pi to read temperature at a rate of 100
Hz

Create a socket on the first Raspberry Pi and set
it as a client

Create a socket on the second Raspberry Pi and
set it as a server

Send the temperature sensor values from the
client to server via a socket interface

Store the first 100 temperature values obtained
in a text file on the Server

14

Task 2
 Install tshark on the Raspberry Pi you are using as the server using the following
commands:

sudo apt-get update
sudo apt-get install tshark

Select Yes when prompted to allow non super users to capture data.
Find the name of the network interface you are using on the pi (use the ifconfig
command). It will probably be eth0 if you are using ethernet or wlan0 if using wifi. Use the
following command to capture tcp traffic on the server port and write the data to file /tcp-
capture.pcap. Update the interface if necessary:

sudo tshark -w /tcp-capture.pcap -i wlan0 -f "tcp port 50007"
Now run the server.py and client.py tcp program again. Once finished, examine the tcp
data recorded in /tcp-capture.pcap using the command:

 sudo tshark -r /tcp-capture.pcap

Task 2(continued)

Examine the tcp data in the /tcp-capture.pcap file and answer the
following questions (use the web where necessary):

 Locate the initial TCP 3-way handshake? Why is this
necessary?

 ACK indicates an acknowledgment and PSH indicates a
data push. What is the significance of the
acknowledgments?


Each frame is allocated a number in the /tcp-capture.pcap file.
Pick a frame number associated with a data push(PSH) from the
leftmost column and examine it in more detail, for example:
 tshark -r /tcp.traffic.pcap -V -Y "frame.number==12"

 Locate the data/payload(close to the end). Can you
relate this to what was sent by the client? Do you think
the data is “safe” during transmission?

Report
 Include the following in your lab report
If possible, include screen shots of
your service working.
Lessons learned
Issues encountered and how you
resolved them.
Final version of the code you created
(or a link to an online repository).
Try to answer any questions in the
lab.

17

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

