
Algorithms

1. Objects and Classes

Robert O’Connor, Frank Walsh

Objectives

●Objects and Classes

●Using Methods in a Java Class

oReferences and Aliases

oArguments and Parameters

●Defining a Java Class

oPassing Arguments

oConstructors

oThe toString Method

oStatic Fields and Methods

●Packages – The Java Class Library
Algorithms - 1. Objects and Classes

Objectives

●Composition

oAdapters

●Inheritance

oInvoking constructors from within constructors

oPrivate fields and methods of the base class

oOverriding, overloading methods

oProtected access

oMultiple inheritance

oType compatibility and base classes

oThe class Object

oAbstract classes and methods

●Polymorphism

Objectives

●Encapsulation

●Specifying Methods

●Java Interfaces

oWriting an Interface

oImplementing an Interface

oAn Interface as a Data Type

oType Casts Within an Interface Implementation

oExtending an Interface

oNamed Constants Within an Interface

oInterfaces Versus Abstract Classes

Objects

●An object is a program construct that

oContains data

oPerforms certain actions

●The actions are called methods

●The actions interact to form the solution to

a given problem

Classes

●A class is a type or kind of object

●Objects of the same class have

oThe same kinds of data

oThe same methods

●A class definition is a general description

of

oWhat the object is

oWhat it can do

Classes

Fig. 1-1 An outline

of a class

Class Instantiation

Fig. 1-2 Three instances of the class automobile

Methods in Java

●Given: Name joe = new Name();

●The new operator creates an instance of

the class

oInvokes the constructor method

●Valued methods return a single value

●void methods do not return a value

Methods in a Java Class

Fig. 1-3 A variable that references an object.

References and Aliases

●Primitive types:

byte, short, int, long

float, double, char, boolean

●All other types are reference or class types

String greeting = "Howdy";

ogreeting is a reference variable

●When two variables reference the same

instance, they are considered aliases

References and Aliases

Fig. 1-4 Aliases of an object

Arguments and Parameters

●Given

Name joe = new Name();

joe.setFirst ("Joseph");

joe.setLast ("Brown");

●"Joseph" and "Brown" are arguments sent to

the methods

●Invocation of method must have same number of

arguments as there are formal parameters in the

declaration

Defining a Class

●Given

●These are the data fields (instance variables)

●Note they are private

oThey will require accessor and mutator methods

public class Name

{ private String first; // first name

private String last; // last name

< Definitions of methods are here. >

} // end Name

Methods

●Given

oThis is a valued method

oReturns a String

●Given

●This is a void method

public void setLast(String lastName)

{ last = lastName; } // end setLast

public String getLast()

{ return last; } // end getLast

Naming Convention

●Start method name with lowercase letter

oUse verb or action phrase e.g. getLast

●Start class name with uppercase

oUse noun or descriptive phrase

e.g public class Name

●Local variables

oA variable declared within a method

Passing Arguments

●Call by value

oFor primitive type, parameter initialised to

value of argument in call

●Call by reference

o"Java manipulates objects 'by reference,' but it

passes object references to methods 'by

value.'"

Passing Arguments

Fig.1-5 a & b The method giveLastNameTo modifies the

object passed to it as an argument.

Name jamie = New Name(“Jamie”, “Jones”);

Name jane = New Name(“Jane”, “Doe”);

jamie.giveLastNameTo(jane);

Public class Name{

….

public void giveLastNameTo(Name child)

{ child.setLast(last);

} // end giveLastNameTo

….

Example In Class

Static Fields & Methods

●A data field that does not belong to any

one object

●One instance of that data item exists to be

shared by all the instances of the class

●Also called:

static field, static variable, class variable

Data Structures - 1. Objects and

Classes

Static Fields & Methods

Data Structures - 1. Objects and

Classes

Fig. 1-8 A static PI versus a non static field

Packages

●Multiple related classes can be conveniently

grouped into a package

●Begin each file that contains a class within the

package
package myStuff;

●Place all files within a directory

oGive folder same name as the package

●To use the package, begin the program with
import myStuff.*;

Data Structures - 1. Objects and

Classes

Composition

●When a class has a data field that is an instance

of another class

●Example – an object of type Student.

Data Structures - 1. Objects and

Classes

Fig. 1-9 A Student object composed of other objects

A "has a"

relationship

Inheritance

●A general or base class is first defined

●Then a more specialised class is defined by …

oAdding to details of the base class

oRevising details of the more general class

●Advantages

oSaves work

oCommon properties and behaviors are define only

once for all classes involved

Algorithms - 1. Objects and Classes

Inheritance

Algorithms - 1. Objects and Classes

Fig. 1-10 A hierarchy of classes.

An "is a"

relationship
public class Car extends Automobile

{ …

} // end Car

…

Car toyota = new Car();

Base Class Constructor

●Constructors usually initialise data fields

●In a derived class

oThe constructor must call the base class constructor

●Can use the reserved word super as a name for

the constructor of the base class

oWhen super is used, it must be the first action in the

derived constructor definition

oMust not use the name of the constructor

Data Structures - 1. Objects and

Classes

Base Class Constructor

Data Structures - 1. Objects and

Classes

public class Automobile extends Vehicle{

private int year; // year of manufacture

private String colour;

public Automobile(int iYear, String sColour){

year = iYear;

colour = sColour;

}

} // end Automobile

public class Car extends Automobile{

private int engineSize;

private String modelType; // saloon, hatchback

public Car (int iYear, String sColour, int iEngine,

String sModel){

super (iYear, sColour);

engineSize = iEngine;

modelType = sModel;

}

} // end Car

Accessing Inherited Data Fields

●Private data field in base class

oNot accessible by name within definition of a method from

another class – including a derived class

oStill they are inherited by the derived class

●Derived classes must use public methods of the base

class e.g. getModel();

●Note that private methods in a base class are also

unavailable to derived classes

oBut usually not a problem – private methods are used only for

utility duties within their class

Data Structures - 1. Objects and

Classes

Overriding Methods

●When a derived class defines a method with the same

signature as in base class

oSame name

oSame return type

oSame number, types of parameters

●Objects of the derived class that invoke the method will

use the definition from the derived class

●It is possible to use super in the derived class to call an

overridden method of the base class

Data Structures - 1. Objects and

Classes

Overriding Methods

Data Structures - 1. Objects and

Classes

public class Automobile extends Vehicle{

private int year; // year of manufacture

private String colour;

…

public String toString(){

return year + “, “ + colour;

}

} // end Automobile

public class Car extends Automobile{

private int engineSize;

private String modelType; // saloon, hatchback

….

public String toString(){

return super.toString() + “, “ + engineSize + “, “ +

modelType;

}

} // end Car

Overriding Methods

●Multiple use of super

oConsider a class derived from a base … that itself is

derived from a base class

oAll three classes have a method with the same

signature

●The overriding method in the lowest derived

class cannot invoke the method in the base

class's base class

oThe construct super.super is illegal

Data Structures - 1. Objects and

Classes

Overloading Methods

●When the derived class method has

oThe same name

oThe same return type … but …

oDifferent number or type of parameters

●Then the derived class has available

oThe derived class method … and

oThe base class method with the same name

●Java distinguishes between the two methods

due to the different parameters

Data Structures - 1. Objects and

Classes

Overloading Methods

●A programmer may wish to specify that a method

definition cannot be overridden

oSo that the behavior of the constructor will not be

changed

●This is accomplished by use of the modifier final

Data Structures - 1. Objects and

Classes

public final void whatever()

{

. . .

}

Multiple Inheritence

●Some languages allow programmer to

derive class C from classes A and B

●Java does not allow this

oA derived class can have only one base class

●Multiple inheritance can be approximated

oA derived class can have multiple interfaces

Data Structures - 1. Objects and

Classes

Object Types of Derived Classes

●Given :

oClass Car,

oDerived from class Automobile

●Then a Car object is also an Automobile

object

●In general …

An object of a derived class is also an

object of the base class
Data Structures - 1. Objects and

Classes

Polymorphism

●When one method name in an instruction can

cause different actions

oHappens according to the kinds of objects that invoke

the methods

●Example

Data Structures - 1. Objects and

Classes

UndergradStudent ug = new UndergradStudent(. . .);

Student s = ug; // s and ug are aliases

s.displayAt(2);

ug.displayAt(4);

The object still remembers it is of

type UndergradStudent

public void displayAt(int numLines){

for (int count=0;count<numLines;count++){

system.out.println();}

display();

}

Polymorphism

●Which displayAt is called …

oDepends on the invoking object's place in the

inheritance chain and is not determined by the type of

the variable naming the object

Data Structures - 1. Objects and

Classes

Fig. 1-12 The variable “s” is another name for an

undergraduate object.

http://download.oracle.com/javase/tutorial/java/IandI/polymorphism.html

http://download.oracle.com/javase/tutorial/java/IandI/polymorphism.html

Encapsulation

●Hides the fine detail of the inner workings of the

class

oThe implementation is hidden

oOften called "information hiding"

●Part of the class is visible

oThe necessary controls for the class are left visible

oThe class interface is made visible

oThe programmer is given only enough information to

use the class

Data Structures - 1. Objects and

Classes

Encapsulation

Data Structures - 1. Objects and

Classes

Fig. 1-13 An automobile's controls are visible to the

driver, but its inner workings are hidden.

Abstraction

●A process that has the designer ask what

instead of how

oWhat is it you want to do with the data

oWhat will be done to the data

●The designer does not consider how the class's

methods will accomplish their goals

●The client interface is the what

●The implementation is the how

Data Structures - 1. Objects and

Classes

Abstraction

Data Structures - 1. Objects and

Classes

Fig. 1-14 An interface

provides well-regulated

communication between a

hidden implementation and

a client.

Specifying Methods

●Specify what each method does

●Precondition

oDefines responsibility of client code

●Postcondition

oSpecifies what will happen if the preconditions are met

●Assertions can be written as comments to

identify design logic
// Assertion: intVal >= 0

Algorithms - 1. Objects and Classes

Java Interface

●A program component that contains

oPublic constants

oSignatures for public methods

oComments that describe them

●Begins like a class definition

oUse the word interface instead of class

public interface someClass

{

public int someMethod();

}

Data Structures - 1. Objects and

Classes

Java Interface Example

public interface NameInterface

{ /** Task: Sets the first and last names.

* @param firstName a string that is the desired first name

* @param lastName a string that is the desired last name */

public void setName(String firstName, String lastName);

/** Task: Gets the full name.

* @return a string containing the first and last names */

public String getName();

public void setFirst(String firstName);

public String getFirst();

public void setLast(String lastName);

public String getLast();

public void giveLastNameTo(NameInterface child);

public String toString();

} // end NameInterface

Algorithms - 1. Objects and Classes

Implementing an Interface

●A class that implements an interface must state

so at start of definition
public class myClass implements someInterface

●The class must implement every method

declared in the interface

●Multiple classes can implement the same

interface

●A class can implement more than one interface

●An interface can be used as a data type

public void someMethod (someInterface x)

Data Structures - 1. Objects and

Classes

Implementing an Interface

Data Structures - 1. Objects and

Classes

Fig. 1-15 The files for an interface, a class that implements

the interface, and the client.

Extending an Interface

●Use inheritance to derive an interface from

another

●When an interface extends another

oIt has all the methods of the inherited interface

oAlso include some new methods

●Also possible to combine several interfaces into

a new interface

oNot possible with classes

Data Structures - 1. Objects and

Classes

Extending an Interface

public interface Nameable{

public void setName(String petName);

public String getName();

} // end Nameable

…

public interface Callable extends

Nameable{

public void come(String petName);

} // end Callable

…

public interface Capable{

public void hear();

public void respond();

} // end capable

…

Data Structures - 1. Objects and

Classes

public interface Trainable extends Callable,

Capable{

public void sit();

public void speak();

public void lieDown();

} // end Trainable

Named Constants

●An interface can contain named constants

oPublic data fields initialised and declared as

final

●Consider an interface with a collection of

named constants

oThen derive variety of interfaces that can

make use of these constants

Data Structures - 1. Objects and

Classes

Summary

●An Object is a program construction that

contains data and methods

●A Class is a type or kind of Object

●Data and methods can be public or private

Data Structures - 1. Objects and

Classes

Summary

●A constructor allocates memory for the

object and initialises the data fields

●A static field/method is associated with the

Class and not the Object

●A package is a group of related classes

Data Structures - 1. Objects and

Classes

Summary

●Composition defines a ‘has a’ relationship

between classes

●Inheritance groups classes that have common

properties (an ‘is a’ relationship)

●Derived class methods can override base class

methods

●Methods can be overloaded when two+ methods

have the same name, but different parameters

Data Structures - 1. Objects and

Classes

Summary

●Polymorphism is where an object decides at

runtime which action of an overridden method to

use

●Encapsulation is a design principal that hides

details of class implementation (“Black Box”)

●Abstraction focuses on what not how

●An Interface declares methods that a class must

implement and also data constants

Data Structures - 1. Objects and

Classes

Summary

●A class that implements an Interface must

have an implements statement in the class

definition

●A Java class can implement any number

of Interfaces

Data Structures - 1. Objects and

Classes

Bibliography

●Frank M. Carrano & Walter Savitch, “Data

Structures and Abstractions with Java”, Prentice

Hall/Pearson Education, 2003

●David J. Barnes & Michael Kölling, “Objects First

with Java: A Practical Introduction using BlueJ”,

Prentice Hall / Pearson Education, 2006

●Eclipse Software Development Kit

www.eclipse.org

Data Structures - 1. Objects and

Classes

http://www.eclipse.org/

