
Produced
by

Agile Software Development

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

First Tests

Assertions

• To check if code is behaving as you expect, use an assertion, a simple
method call that verifies that something is true.

• E.g the method assertTrue checks that the given boolean condition is true

3

 public void assertTrue(boolean condition)	
 {	
 if (!condition)	
 {	
 abort();	
 }	
 }

Using Asserts

• You could use this assert to check
all sorts of things, including whether
numbers are equal to each other.

• To check that two integers are
equal, a method that takes two
integer parameters might be more
useful.

• We can now write the first test a
little more expressively:

4

 int a = 2;	
 //...	
 assertTrue (a == 2);

 public void assertEquals (int a, int b)	
 {	
 assertTrue(a == b);	
 }

 int a = 2;	
 	
 assertEquals (2, a);

Planning Tests

• Method to test: A static method
designed to find the largest number in a
list of numbers.

• The following tests would seem to make
sense:

• [7, 8, 9] -> 9

!

• [8, 9, 7] -> 9

!

• [9, 7, 8] -> 9

(supplied test data ->expected result)

5

 public static int largest (int[] list)	
 {	
 ...	
 }

More Test Data + First Implementation

• Already have this data:

 [7, 8, 9] -> 9

 [8, 9, 7] -> 9

 [9, 7, 8] -> 9

• What about this set:

[7, 9, 8, 9] -> 9

[1] -> 1

[-9, -8, -7] -> -7

6

 public static int largest (int[] list)	
 {	
 int index, max = Integer.MAX_VALUE;	
!
 for (index = 0; index < list.length - 1; index++)	
 {	
 if (list[index] > max)	
 {	
 max = list[index];	
 }	
 }	
 return max;	
 }

Writing the Test

• This is a TestCase called
TestLargest.

• It has one Unit Test - to verify
the behaviour of the largest
method.

7

import junit.framework.TestCase;	
!
public class TestLargest extends TestCase	
{	
 public TestLargest (String name)	
 {	
 super(name);	
 }	
!
 public void testOrder ()	
 {	
 int[] arr = new int[3];	
 arr[0] = 8;	
 arr[1] = 9;	
 arr[2] = 7;	
 assertEquals(9, Largest.largest(arr));	
 }	
}

Running the Test

• Why did it return such a huge number
instead of our 9

• Where could that very large number
have come from?

8

Bug

• First line should initialize
max to zero, not
MAX_VALUE.

9

 public static int largest (int[] list)	
 {	
 //int index, max = Integer.MAX_VALUE;	
 int index, max = 0;	
!
 for (index = 0; index < list.length - 1; index++)	
 {	
 if (list[index] > max)	
 {	
 max = list[index];	
 }	
 }	
 return max;	
 }

Further Tests

• What happens when the largest number appears in different places
in the list - first or last, and somewhere in the middle?

• Bugs most often show up at the “edges”

• In this case, edges occur when when the largest number is at
the start or end of the array that we pass in

• Aggregate into a single unit test:

10

 public void testOrder ()	
 {	
 assertEquals(9, Largest.largest(new int[] { 9, 8, 7 }));	
 assertEquals(9, Largest.largest(new int[] { 8, 9, 7 }));	
 assertEquals(9, Largest.largest(new int[] { 7, 8, 9 }));	
 }

Failure
+ Fix

11

 public static int largest (int[] list)	
 {	
 int index, max = 0;	
 //for (index = 0; index < list.length - 1; index++)	
 for (index = 0; index < list.length; index++)	
 {	
 if (list[index] > max)	
 {	
 max = list[index];	
 }	
 }	
 return max;	
 }

Further Boundary Conditions

• Now exercising multiple tests

12

 public void testDups ()	
 {	
 assertEquals(9, Largest.largest(new int[] { 9, 7, 9, 8 }));	
 }	
!
 public void testOne ()	
 {	
 assertEquals(1, Largest.largest(new int[] { 1 }));	
 }

Failure on testNegative

13

 public void testNegative ()	
 {	
 int[] negList = new int[] { -9, -8, -7 };	
 assertEquals(-7, Largest.largest(negList));	
 }

fix testNegative

• Choosing 0 to initialize
max was a bad idea;

• Should have been MIN
VALUE, so as to be
less than all negative
numbers as well

14

 public static int largest (int[] list)	
 {	
 //int index, max = 0;	
 int index, max = Integer.MIN_VALUE;	
!
 for (index = 0; index < list.length; index++)	
 {	
 if (list[index] > max)	
 {	
 max = list[index];	
 }	
 }	
 return max;	
 }

Expected Errors?

• If the array is empty, this is
considered an error, and an
exception should be thrown

15

 public void testEmpty ()	
 {	
 try	
 {	
 Largest.largest(new int[] {});	
 fail("Should have thrown an exception");	
 }	
 catch (RuntimeException e)	
 {	
 assertTrue(true);	
 }	
 }

 public static int largest (int[] list)	
 {	
 int index, max = Integer.MIN_VALUE;	
!
 if (list.length == 0)	
 {	
 throw new RuntimeException("Empty list");	
 }	
 for (index = 0; index < list.length; index++)	
 {	
 if (list[index] > max)	
 {	
 max = list[index];	
 }	
 }	
 return max;	
 }

Except where otherwise noted, this content is
licensed under a Creative Commons Attribution-
NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

