Comparing Objects

Frank Walsh



Introduction

* Four methods underlie many of Java’s important Collection
types: , and , and

* To put your own objects into a Collection, you need to ensure that these
methods are defined properly

* Any collection with some sort of membership test uses (which, in
many cases, defaults to ==)

* Any collection that depends on sorting requires larger/equal/smaller

comparisons ( or )
* Any collection that depends on hashing requires both equality testing
and hash codes | and )
* Any time you implement , You must also implement
 Some of Java’s classes, such as , already define all of these

properly for you
* For your own objects, you have to do it yourself



Comparing our own objects

* The class provides
and
methods

* For objects that we define, the inherited and
methods use the object’s address in
memory

* We can override these methods
* If we override , we should override
* If we override , we must override

* The class does not provide any methods
for “less” or “greater”—however,
* Thereis a interface in
* Thereis a interface in



Outline of a Student class

public class Student implements Comparable<Student> ({

public String name;

public int score;

public Student (String name, int score) ({
this.name = name;
this.score = score;

}

@Override
public int compareTo (Student that) {

return this.score-that.score;



Include a main method

public static void main (String args[]) {
TreeSet<Student> set = new TreeSet<Student>() ;
set.add (new Student("Ann", 87));
set.add (new Student("Bob", 83));
set.add (new Student("Cat", 99));
set.add (new Student("Dan", 25));
set.add (new Student ("Eve", 76)) ;
Tterator<Student> iter = set.iterator();
while (iter.hasNext()) {
Student s = iter.next();

System.out.println(s.name + " " 4+ s.score);



Using the TreeSet

* Use an iterator to print out the values in order, and
get the following result:

* [terator “knows” that it should sort s by
, rather than, say, by from the
compareTo() method.



Using a separate Comparator

* In the program we just finished, implemented

* Therefore, it had a method

* We could sort students only by their score

* |f we wanted to sort students another way, such as by
name, we are out of luck

* Now we will put the comparison method in a separate class

that implements instead of
* This is more flexible (you can use a different to sort
Students by name or by score), but it’s also clumsier
isin , hot
requires a definition of but

requires a definition of



Outline of StudentComparator

public class StudentComparator implements
Comparator<Student> ({

@Override

public int compare (Student sl, Student s2) {

Note: When we are using this Comparator, we don’t need
the method in the class



The compare method

* This differs from in
in these ways:
* The name is different
* |t takes both objects as parameters, not just one



Update main method

* The main method is just like before, except that
instead of

TreeSet<Student> set = new TreeSet<Student>();

We have

Comparator<Student> comp = new StudentComparator();
TreeSet<Student> set = new TreeSet<Student>(comp);

10



When to use each

* The interface is simpler and less work
* Your class
* You provide a method

* You will use the same comparison method every time
* Use for “natural” or “default” sort order.

* The interface is more flexible but slightly
more work

* Create as many different classes that implement
as you like

* You can sort different data structures
* Construct/sort or using the comparator you want

* For example, sort by or by



Sorting differently

* Suppose you have students sorted by score, in a you call

* Now you want to sort them again, this time by name
* Create the following Comparator

public class StudentByNameComparator implements
Comparator<Student> {

@Override
public int compare (Student sl1l, Student s2) {

return sl.name.compareToIgnoreCase (s2.name) ;

}



Sorting differently
Add to the Main Method:

TreeSet<Student> setByName = new
TreeSet<Student> (new StudentByNameComparator()) ;

setByName.addAll (set) ;
iter = setByName.iterator();
System.out.println("\nStudents by Name')
while (iter.hasNext()) {

Student s = iter.next();

System.out.println(s.name + " " + s.score);

}

13



Solution

* See this solution in the examples GitHub Repo...



