
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

Algorithms

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

CORRECT Boundary
Conditions

Correct Thinking

• The underlying question to be constantly considered is:

• What can go wrong?

• Once you think of something that could go wrong, write a test for it. Once
that test passes, again ask

• What else can go wrong?

• and so on.

3

C.O.R.R.E.C.T.

• Conformance - Does the value conform to an expected format?

• Ordering - Is the set of values ordered or unordered as appropriate?

• Range - Is the value within reasonable minimum and maximum values?

• Reference - Does the code reference anything external that isn't under direct
control of the code itself?

• Existence - Does the value exist (e.g., is non-null, nonzero, present in a set,
etc.)?

• Cardinality - Are there exactly enough values?

• Time (absolute and relative) - Is everything happening in order? At the right
time? In time?

4

Conformance

• When data in a specific format is expected -consider what will happen if the
data does not conform to the structure.

• Eg and email address :

name@somewhere.com

firstname.lastname@subdomain.somewhere.com

firstname.lastname%somewhere@subdomain.somewhere.com

firstname

• How will code react to each of these?

• Similarly, if code is producing data to a specific format, test must verify that
the generated data conforms to desired format

5

mailto:name@somewhere.com

Ordering

• Position of one piece of data
within a larger collection.

• A search routine should be
tested for conditions where
the search target is first or last

• For a sort routine, what might
happen if the set of data is
already ordered? Or sorted in
precisely reverse order?

6

 public void testOrder ()
 {
 assertEquals(9, Largest.largest(new int[] { 9, 8, 7 }));
 assertEquals(9, Largest.largest(new int[] { 8, 9, 7 }));
 assertEquals(9, Largest.largest(new int[] { 7, 8, 9 }));
 }

 public void testDups ()
 {
 assertEquals(9, Largest.largest(new int[] { 9, 7, 9, 8 }));
 }

 public void testOne ()
 {
 assertEquals(1, Largest.largest(new int[] { 1 }));
 }

 public void testNegative ()
 {
 int[] negList = new int[] { -9, -8, -7 };
 assertEquals(-7, Largest.largest(negList));
 }

 public void testEmpty ()
 {
 try
 {
 Largest.largest(new int[] {});
 fail("Should have thrown an exception");
 }
 catch (RuntimeException e)
 {
 assertTrue(true);
 }
 }

Range (1)

• A variable's type may allow it to
take on a wider range of values.
e.g. age

• Typically do not use a raw
native types to store a
bounded-integer values e.g
Bearing.

• Encapsulating a bearing within
a class yields one point in the
system that can filter out bad
data

7

public class Bearing
{
 protected int bearing; // 0..359

 public Bearing(int num_degrees)
 {
 if (num_degrees < 0 || num_degrees > 359)
 {
 throw new RuntimeException("Bad bearing");
 }
 bearing = num_degrees;
 }

 public int angleBetween (Bearing anOther)
 {
 return bearing - anOther.bearing;
 }
}

Range (2)

• Two sets of x, y co-ordinates.

• Integers, with arbitrary values, with the constraint that the two points must
describe a rectangle with no side greater than 100 units.

• Custom assert might be an option:

8

public static final int MAX_DIST = 100;

public void assertPairRange(String message, Point one, Point two)
{
 assertTrue(message,
 Math.abs(one.x - two.x) <= MAX_DIST);
 assertTrue(message,
 Math.abs(one.y - two.y) <= MAX_DIST);
}

Reference (1)

• What things does the method under test reference that are outside the scope
of the method itself?

• external dependencies

• state

• other conditions

• Eg.

• a method in a web application to display a customer's account history
might require that the customer is first logged on.

• the method pop() for a stack requires a nonempty stack.

• shifting the transmission in a car to Park from Drive requires that the car is
stopped.

9

Reference (2)

• If assumptions are made about

• the state of the class

• the state of other objects

• the global application

• then need to test your code to
make sure that it is well-
behaved if these assumptions
are not met.

10

public void testJamItIntoPark()
{
 transmission.select(DRIVE);
 car.accelerateTo(35);
 assertEquals(DRIVE, transmission.getSelect());
 // should silently ignore
 transmission.select(PARK);
 assertEquals(DRIVE, transmission.getSelect());
 car.accelerateTo(0); // i.e., stop
 car.brakeToStop();
 // should work now
 transmission.select(PARK);
 assertEquals(PARK, transmission.getSelect());
 }

Existence

• Make sure the method under test can stand up to nothing!

• Network resource, files' URLs, license keys, users, printers may all
disappear without notice

• Many Java library methods will throw an exception of some sort when faced
with non-existent data.

• Difficulty: hard to debug a generic runtime exception

• Exception that reports “Url blank” helps in makes tracking down issue

• Unit test with plenty of nulls, zeros, empty strings etc...

11

Cardinality (1)

• If you've got 12 feet of lawn that you want to fence, and each section of
fencing is 3 feet wide, how many fence posts do you need?

12

Cardinality (2)

• This problem, and the related common errors, come up so often that they are
graced with the name “fencepost errors” or “off-by-one errors”

• http://en.wikipedia.org/wiki/Off-by-one_error

13

Cardinality (3)

• Related to Existence & Boundary - how to make sure there are exactly as
many items as needed

• The count of some set of values is most interesting in these three cases:

• 1. Zero

• 2. One

• 3. More than one

• It's called the “0-1-n-Rule” and it's based on the premise that if method can
handle more than one of something, it can probably handle 10, 20, or 1,000.

• Sometimes n may be significant -

• top 10 results

• leading 100 users

14

Time

• Relative time (ordering in time)

• Absolute time

• Concurrency issues

15

Time - Relative

• Some interfaces are inherently stateful:

• login() will be called before logout()

• prepareStatement() is called before executeStatement()

• connect() before read() which is before close()

• Test calling methods out of the expected order try skipping the first, last and
middle of a sequence

• Relative time might also include issues of timeouts in the code: how long your
method is willing to wait for some resource to become available

16

Time - Absolute

• The actual “wall clock” time.

• Most of the time, this makes no difference. However, occasionally, the actual
time of day will matter.

• e.g: Question: every day of the year is 24 hours long? - true or false?

17

Time - Absolute

• Answer: It Depends!

• In UTC (Universal Coordinated Time, the modern version of Greenwich Mean
Time, or GMT), the answer is YES.

• In areas of the world that do not observe Daylight Savings Time (DST), the
answer is YES.

• In most of the U.S. (which does observe DST), the answer is NO.

• In April, you'll have a day with 23 hours (spring forward) and in October
you'll have a day with 25 (fall back).

• This means that arithmetic won't always work as you expect; 1:45AM plus
30 minutes might equal 1:15, for instance.

18

Time - Concurrency

“Most code you write in Java will be run in a multi-threaded environment”
• Is this true?

• Simple Console Application?

• RMI application?

• Swing GUI Application?

• Spring Web Application?

• What will happen if multiple threads use this same object at the same time?
Are there global or instance level data or methods that need to be
synchronized?

• How about external access to files or hardware?

19

Except where otherwise noted, this content is
licensed under a Creative Commons Attribution-
NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

