Searching

Frank Walsh

Reference: http://algs4.cs.princeton.edu/33balanced/

Agenda

e Symbol Tables

* Linked Lists

* Binary Tree

* Balanced Binary Tree
* Hash Tables

Symbol Tables

* A symbol table is a data structure of key — value

pa I rS J@:EYS \‘”\3'-2U/E2S

. Feb 368.2

* Supports two operations: Yo I
G May 1OOTO

¢ et Jun 699

° Put (T [j’t:‘x‘g ;ii
,_SEQ 190

. . . ct 370

* Get: gets a value associated with a given key. Nov 732
| Deg 110.9

Annual 15510

* Put: puts a new key/value pair into the table.
 E.g. Dictionaries you've been using previously.

o 373

Symbol Table Applications

application purpose of search key value
dictionary find definition word definition
book index find relevant pages term list of page numbers
file share find song to download name of song computer 1D
account management process transactions account number transaction details
web search find relevant web pages keyword list of page names
compiler find type and value variable name type and value

Typical symbol-table applications

Symbol Tables API

void

Value

void
boolean
boolean
int

Iterable<Key>

put key-value pair into the table

put(Key key, Value val) (remove key from table if value is nul11)

value paired with key

get(Key key) (nul1 if key is absent)

delete(Key key) remove key (and its value) from table
contains(Key key) is there a value paired with key?
1sEmpty() is the table empty?

size() number of key-value pairs in the table
keys() all the keys in the table

API for a generic basic symbol table

Binary Trees

Aside - Linked Lists

 Linear collection of data elements, 12| &+>199 | & >37| &>

called nodes.

* Each node is composed of data
and reference to the next node in
the sequence.

Array vs. Linked List

Linked List

* Allows for efficient insertion or == ==F2

removal of elements.
* Implementations in Java SE: I J g
2 23 a dd | 7a
* LinkedList -3 B B 8aan
* Implements List interface from
Collections API

https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

Binary Tree

e Combines insertion of Linked root
List with efficiency of ot Tk /
searching a sorted Array R e 4{(_

* One of the most fundamental S (>_2
algorithms in computer .f“‘r]
science N *'{ ot child

.}_{ l.u;r .!' root

w

| i | 1
M HITES

Anatomy of a binary tree

Binary Tree Anatomy

A binary tree is composed of zero or more nodes
* InJava, a reference to a binary tree may be

Each node contains:
* Avalue (some sort of data item)
* Areference to a left child (may be), and
* Areference to a right child (may be)

A binary tree may be empty (contain no nodes)

If not empty, a binary tree has a root node

* Every node in the binary tree is reachable from the
root node by a unique path

A node with no left child and no right child is
called a leaf

* In some binary trees, only the leaves contain a value

S
i IALF]

/!

2
1F. e ™ :}—2
Y O
s ‘"‘r_w .) .*'-.-r'i.'l-u'f'i-:-'“'
7)) 78/ ofroor
“J

| | 1
D JTFTEE

Anatomy of a binary tree

More terminology

* Node A is the parent of node B if node B is a
child of A

e Node A is an ancestor of node Bif Ais a
parent of B, or if some child of Ais an
ancestor of B

* |n less formal terms, A is an ancestor of Bif Bis a
child of A, or a child of a child of A, or a child of a
child of a child of A, etc.

e Node B is a descendant of Aif Ais an
ancestor of B

* Nodes A and B are siblings if they have the
same parent

10

/N
d/\e \f
VAVANAN

Size and depth

* The size of a binary tree is the
number of nodes in it

/ \ * This tree has size 12

* The depth of a node is its

/\ \ distance from the root

is at depth zero

g/ h/ \i J/\k is at depth 2

* The depth of a binary tree is
/ the depth of its deepest node

1 * This tree has depth 4

11

Balance

a /a
b/\ ; X

N N 7\,

d e f g Y,)
/\ / d £

h 1] AN\

A balanced binary tree /fi h
1]

An unbalanced binary tree

* A binary tree is balanced if every level above the lowest is “full”
(contains 2" nodes)

* In most applications, a reasonably balanced binary tree is desirable

12

Binary Search Trees

* A binary tree is sorted if every node in the tree is larger than (or equal to)
its left descendants, and smaller than (or equal to) its right descendants

* Equal nodes can go either on the left or the right (but it has to be
consistent)

13

Binary Search Trees (BST)

e Examine the following list of keys (sorted).
A,C,E,H,M,R,S,X

* Opposite diagram represents keys as two
different Sorted Binary Trees.

* Each left link references a Binary tree with
smaller keys.

* Each right link references a Binary tree with
larger Keys

>~ Y-

.fq’
|

|

|

|

|

|

|

C

Two B5Ts that represent
the same set of keys

Searching a Binary Search Tree.

* Look at array location

Searching for 5: oot
- Using a binary
- search tree
13
e 1 2 3 4 5 6 AN
23|57 [11]13]17] | 2 11 17

15

Searching a Binary Search Tree

succassful ssarch for B unsuccessiul search for T

R is less than S
so look to the left T is greater than S
, =0 ook o the right
black nodes could 5

match the search key
.-"E"‘-'.
- [3
I.
gray nodes cannot
M) match the search key

=

P

R is greater than E T is less than X
so look to the righi so look to the J-:'Jl'-u'

link is nudl
so T is not in tree
{search miss)

= T foundR
(search hit)
s0 return value

Tree traversals

* A binary tree is defined recursively: it consists of a root, a
left subtree, and a right subtree

* To traverse (or walk) the binary tree is to visit each node in
the binary tree exactly once

* Tree traversals are naturally recursive

* Since a binary tree has three “parts,” there are six possible
ways to traverse the binary tree:

* root, left, right . root, right, left
* left, root, right .« right, root, left
* left, right, root . right, left, root

17

BinaryTree class

* A constructor for a binary tree should have three parameters, corresponding to
the three fields

* An “empty” binary tree is just a value of null
* Therefore, we can’t have an method (why not?)

18

Preorder traversal

* In preorder, the root is visited first

* Here's a preorder traversal to print out all the elements in
the binary tree:

public void preorderPrint(BinaryTree bt) {
if (bt == null) return;
System.out.println(bt.value);
preorderPrint(bt.leftChild);
preorderPrint(bt.rightChild);

19

lnorder traversal

* In inorder, the root is visited in the middle

* Here's an inorder traversal to print out all the elements in
the binary tree:

20

Postorder traversal

* In postorder, the root is visited /ast

* Here's a postorder traversal to print out all the elements in
the binary tree:

public void postorderPrint(BinaryTree bt) {
if (bt == null) return;
postorderPrint(bt.leftChild);
postorderPrint(bt.rightChild);
System.out.println(bt.value);

21

Tree traversals using “flags”

* The order in which the nodes are visited during a tree
traversal can be easily determined by imagining there is a
“flag” attached to each node, as follows:

R AR 2N

preorder inorder postorder

* To traverse the tree, collect the flags:

® ®
) g @ \@
Tom

ﬁ@@ﬁﬁ@@@ﬁ%

ABDECFG DBEAFCG DEBFGCA

22

Analysis of BST

best case

* Running times of algorithms on PN
BSTs depend on the shapes of the ORGCEORS
frees AR X

* Depends on order in which keys e &
are inserted S I

N

* Best Case: perfectly balanced, with SR
~1gN nodes between the root and B o
each null link cl

e
e Worst Case: N nodes on the search *’5—”?-3
o v
path I}”é’}:-::‘i

* Good to get Balance...

B5T possibilities

Balanced Tree

2-3 search trees

* In an N-node tree, we would like the
height to be ~lg N

* Guarantees searches can be
completed in ~lg N compares

e A 2-3 search tree is a tree that has

* A 2-node, with one key, a left link to a 2-3
search tree with smaller keys, and a right
link to a 2-3 search tree with larger keys

* A 3-node, with two keys and three links, a
left link to a 2-3 search tree with smaller
keys, a middle link to a 2-3 search tree
with keys between the node’s keys, and a
Light link to a 2-3 search tree with larger

eys

Anatomy of a 2-3 search tree

Searching 2-3 node tree

successful search for H

H 15 lesy tharn M so
look to the left ™ (M)

R S

T=r-
I
1=

H 15 between E and J 5o
-~ [opak i1 the middle

(E 2

BRR

o
"J:I..-"

I

found H so return value (search hit)

unsuccessful search for B

B 15 less than M so
T e [alt -
lovak to the left ~_ fH“HI

L

E] R
SRR A 5

B iz less than E
5o fook to the left

1}
Ty

“ (E 1)

H\Q

(A C
u_l_,]
I

B iz between A and C so look i the middle
tirik 5 mull so B {5 not in the tree (search miss)

Search hit (left} and search miss {right) in a 2-3 tree

Creation trace & Implementation

* Implementation of 2-3 tree is E
d |ff| cu |t .) e

* need to maintain two different type: 3" s
of nodes c @

e compare search keys against key o

e copy links and other information *:\3
from one type of node x FiRens

e convert nodes from one type to ED
another. P

& R
e Simplified using Red-Black BST O
* Reuses simple BST structure L O{j

Red-Black BST

* Basic idea:
» use standard BSTs (which are made up of 2-nodes)
and add extra information to encode 3-nodes.
e Use two different link types:

* red links, which bind together two 2-nodes to
represent 3-nodes

* Black links, which bind together the 2-3 tree.
* No node has two red links connected to it.

* The tree has perfect black balance : every path
from the root to a null link has the same
number of black links.

s etweet,

IR NI

Encoding a 3-node with two 2-nodes
connected by a left-leaning red link

Node implementation

h
h.left.color E-#’ h.right.color

s RED > e - is BLACK

A_“,\ }D G

private static final boolean RED = true;
private static final boolean BLACK = false;

private class Node

{
Key key; ff key
Value val; J// associated data
Mode left, right; // subtrees
int N; [/ # nodes in this subtree
boolean color; // color of Tink from
" parent to this node
Node(Key key, Value wval, int N, boolean color)
{
this.key = key;
this.val = val;
this.N = N;
this.color = color;
}
}
private boolean isRed(Node x)
{
if (x == null) return false;
return x.color == RED;

}

red-black BST

horizontal red links

2-3 tree

1-1 correspondence between red-black B5Ts and 2-3 trees

Rotating and Flipping

* Right-leaning red

links or two red-

links in a row can

occur during
operations (add,
delete etc)

e This is corrected

using a left or right
rotate operation.

* May need to also

“flip” colours

could be right or left,
« red or black

less

than E between greater

E and 5 than §

Mode rotateLeft(Node h)
{

Mode x = h.right;
LFight = w.left;
.deft = h:
colar = h.calor;
.colar = RED;

Moo= h.M;
M= 1 ¢+ sizelh.left)

=l e g =

+ sizelh.right);

FETUrn x;
F
greater
y L "I'l'qi"l' S
j5 betwesi —
than E E and 5

Left rotate (right link of h)

o) h
- /K
",
/CE(
grealer
than 5

less between
than E Sand E

Node rotateRight(MNode h)
1

Node x = h.left;
Jdeft = x.right;
.right = h;
.color = h.colar;
.color = RED;
N = h.N;
N =1+ size(h.left)

+ sizelh.right);

return x;

OHE IO X T

less

than E

between grealer
SandE than 5

Right rotate (left link of h)

J I|'|.l A il
« A orright link
E

f A\"N’gw.
7N\ /N

li2ss between®, /between', [/ greater

than A A and E E and 5 than 5

vold fliploloers{Node h)}
h.calor = RED;

h.left.color = BLACK;
h.right.color = BLACK;

red link affackes

_— middle node
IJE" 0 prarerd
|.-|I:ﬁ. || ﬁ..'l "l.-lll
iy 2= I'.||.|II: L] / -\

liess between®, /between’, [/ greater

|"

hics A A qrid E E ard 5 thgn 5

Flipping colors to split a 4-node

Implementation

Get source code at:
http://algs4.cs.princeton.edu/33balanced/Red

BlackLiteBST.java.html

insert 5

E

A

standard indexing client

insert A

C

E

Red-black BST construction traces

M
Rl
2
(H
r)
-
{ 5
D! ¥
I

2!
2

same keys in increasing order

http://algs4.cs.princeton.edu/33balanced/RedBlackLiteBST.java.html

Hash Tables

Hash Tables

» Using Key, Value pairs for data, if the
key values are integers then we can
interpret the key as the position in an
Array.

* For key i, store the value at location i in
an array

* Example(student Ids)

* Where keys are more complicated

(e.g. string, phone number), consider
Hashing.

* An example of Hashing is performing
arithmetic operations to transform
keys into array indices.

e Store value at the corresponding index.

OBJECT —» INTEGER

DATA
obj1
obj2

obj3

objd

HASH CODES

> 4

16

68

- 125

79054025
255fbla2
6ed4bc4d22
aet54eb4

Searching using Hash Tables

 Search algorithms that use hashing consist of two separate parts.
* a hash function that transforms the search key into an array index.

* collision-resolution process two or more different keys hash to the same array
index.

Hash
f(A) - f(B) Michael =i — 1
Jim — 2
Dwight —— prpi
Pam = i 4
AZB o —

This can
happen

Hash Functions

* Consider an array that can hold M key-value pairs.

* This requires a Hash function that can transform a key to an integer
range O to M-1, [0O,M-1].

* Hash function should compute index efficiently and evenly distribute
values from 0 to M-1 (uniform distribution).

Hashing Positive integers

* Modular Hashing:

1. Choose array of size M where M is a
prime number.

2. For aninteger key k, compute k
modulo M. This gives the
remainder of k divided by M.

3. Produces uniform distribution from
0 to M-1

212
618
302
940
702
704
612
606

510
423
650
317
907
507
104
714
857
801
200
413
701
418
601

4«0

18

18
36
11
67
23
25
30
24
93
25
3s
68
26
34
22
13
35
81
25
27
2%
22
30
19

Modular hashing

Hashing Floats

e Key is real number, k, between 0 and 1.
1. Choose array of size M where M is a prime number.

2. Multiply k by M and round to the nearest integer to get an index
between 0 and M-1.

3. Better way: Use modular hashing on the binary representation of
the key

Hashing Strings

* Treat Strings as huge integers.
1. Choose array of size M where M is a prime number.
2. Choose small prime number R.

3. The following computes a hash.

int hash = 0;
for (inti=0;i<s.length(); i++)
hash = (R * hash + s.charAt(i)) % M,

Multiple Fields

* If the key type has multiple integer fields:

* Mix together as follows for Student object with strudentld, yearOfBirth, and
Courseld fields.

int hash = (((studentld * R + yearOfBirth) % M) * R + Courseld) % M;

Example of User Defined Hash Code

public class Transaction

{

private final String who;
private final Date when;
private final double amount;
public int hashCode(){
int hash =17;
hash = 31 * hash + who.hashCode();
hash = 31 * hash + when.hashCode();
hash = 31 * hash + ((Double) amount).hashCode();
return hash;

}

References

http://algs4.cs.princeton.edu/home/

https://en.wikipedia.org/wiki/Binary tree

http://algs4.cs.princeton.edu/home/
https://en.wikipedia.org/wiki/Binary_tree

