
Searching
Frank Walsh

Reference: http://algs4.cs.princeton.edu/33balanced/

Agenda

• Symbol Tables

• Linked Lists

• Binary Tree

• Balanced Binary Tree

• Hash Tables

Symbol Tables

• A symbol table is a data structure of key – value
pairs

• Supports two operations:
• Get

• Put

• Get: gets a value associated with a given key.

• Put: puts a new key/value pair into the table.

• E.g. Dictionaries you’ve been using previously.

Symbol Table Applications

Symbol Tables API

Binary Trees

Aside - Linked Lists

• Linear collection of data elements,
called nodes.

• Each node is composed of data
and reference to the next node in
the sequence.

• Allows for efficient insertion or
removal of elements.

• Implementations in Java SE:
• LinkedList

• Implements List interface from
Collections API

https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

Binary Tree

• Combines insertion of Linked
List with efficiency of
searching a sorted Array

• One of the most fundamental
algorithms in computer
science

9

Binary Tree Anatomy
• A binary tree is composed of zero or more nodes

• In Java, a reference to a binary tree may be null

• Each node contains:
• A value (some sort of data item)

• A reference to a left child (may be null), and

• A reference to a right child (may be null)

• A binary tree may be empty (contain no nodes)

• If not empty, a binary tree has a root node
• Every node in the binary tree is reachable from the

root node by a unique path

• A node with no left child and no right child is
called a leaf
• In some binary trees, only the leaves contain a value

10

More terminology

• Node A is the parent of node B if node B is a
child of A

• Node A is an ancestor of node B if A is a
parent of B, or if some child of A is an
ancestor of B
• In less formal terms, A is an ancestor of B if B is a

child of A, or a child of a child of A, or a child of a
child of a child of A, etc.

• Node B is a descendant of A if A is an
ancestor of B

• Nodes A and B are siblings if they have the
same parent

a

b c

d e f

g h i j k

l

11

Size and depth
• The size of a binary tree is the

number of nodes in it
• This tree has size 12

• The depth of a node is its
distance from the root
• a is at depth zero

• e is at depth 2

• The depth of a binary tree is
the depth of its deepest node
• This tree has depth 4

a

b c

d e f

g h i j k

l

12

Balance

• A binary tree is balanced if every level above the lowest is “full”
(contains 2n nodes)

• In most applications, a reasonably balanced binary tree is desirable

a

b c

d e f g

h i j

A balanced binary tree

a

b

c

d

e

f

g h

i j

An unbalanced binary tree

13

Binary Search Trees

• A binary tree is sorted if every node in the tree is larger than (or equal to)
its left descendants, and smaller than (or equal to) its right descendants

• Equal nodes can go either on the left or the right (but it has to be
consistent)

10

8 15

4 12 20

17

Binary Search Trees (BST)

• Examine the following list of keys (sorted).
A,C,E,H,M,R,S,X

• Opposite diagram represents keys as two
different Sorted Binary Trees.

• Each left link references a Binary tree with
smaller keys.

• Each right link references a Binary tree with
larger Keys

15

Searching a Binary Search Tree.
• Look at array location (lo + hi)/2

2 3 5 7 11 13 17

0 1 2 3 4 5 6

Searching for 5:
(0+6)/2 = 3

hi = 2;
(0 + 2)/2 = 1 lo = 2;

(2+2)/2=2
7

3 13

2 5 11 17

Using a binary

search tree

Searching a Binary Search Tree

17

Tree traversals
• A binary tree is defined recursively: it consists of a root, a

left subtree, and a right subtree

• To traverse (or walk) the binary tree is to visit each node in
the binary tree exactly once

• Tree traversals are naturally recursive

• Since a binary tree has three “parts,” there are six possible
ways to traverse the binary tree:

• root, left, right

• left, root, right

• left, right, root

• root, right, left

• right, root, left

• right, left, root

BinaryTree class

class BinaryTree<V> {
V value;
BinaryTree<V> leftChild;
BinaryTree<V> rightChild;

// Assorted methods…
}

• A constructor for a binary tree should have three parameters, corresponding to
the three fields

• An “empty” binary tree is just a value of null
• Therefore, we can’t have an isEmpty() method (why not?)

18

19

Preorder traversal
• In preorder, the root is visited first

• Here’s a preorder traversal to print out all the elements in
the binary tree:

public void preorderPrint(BinaryTree bt) {
if (bt == null) return;
System.out.println(bt.value);
preorderPrint(bt.leftChild);
preorderPrint(bt.rightChild);

}

20

Inorder traversal
• In inorder, the root is visited in the middle

• Here’s an inorder traversal to print out all the elements in
the binary tree:

public void inorderPrint(BinaryTree bt) {
if (bt == null) return;
inorderPrint(bt.leftChild);
System.out.println(bt.value);
inorderPrint(bt.rightChild);

}

21

Postorder traversal
• In postorder, the root is visited last

• Here’s a postorder traversal to print out all the elements in
the binary tree:

public void postorderPrint(BinaryTree bt) {
if (bt == null) return;
postorderPrint(bt.leftChild);
postorderPrint(bt.rightChild);
System.out.println(bt.value);

}

22

Tree traversals using “flags”
• The order in which the nodes are visited during a tree

traversal can be easily determined by imagining there is a
“flag” attached to each node, as follows:

• To traverse the tree, collect the flags:

preorder inorder postorder

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A B D E C F G D B E A F C G D E B F G C A

Analysis of BST

• Running times of algorithms on
BSTs depend on the shapes of the
trees

• Depends on order in which keys
are inserted

• Best Case: perfectly balanced, with
~ lgN nodes between the root and
each null link

• Worst Case: N nodes on the search
path

• Good to get Balance…

Balanced Tree

2-3 search trees

• In an N-node tree, we would like the
height to be ~lg N

• Guarantees searches can be
completed in ~lg N compares

• A 2-3 search tree is a tree that has
• A 2-node, with one key, a left link to a 2-3

search tree with smaller keys, and a right
link to a 2-3 search tree with larger keys

• A 3-node, with two keys and three links, a
left link to a 2-3 search tree with smaller
keys, a middle link to a 2-3 search tree
with keys between the node’s keys, and a
right link to a 2-3 search tree with larger
keys

Searching 2-3 node tree

Creation trace & Implementation

• Implementation of 2-3 tree is
difficult:
• need to maintain two different types

of nodes

• compare search keys against key

• copy links and other information
from one type of node

• convert nodes from one type to
another.

• Simplified using Red-Black BST
• Reuses simple BST structure

Red-Black BST

• Basic idea:
• use standard BSTs (which are made up of 2-nodes)

and add extra information to encode 3-nodes.

• Use two different link types:
• red links, which bind together two 2-nodes to

represent 3-nodes
• Black links, which bind together the 2-3 tree.

• No node has two red links connected to it.

• The tree has perfect black balance : every path
from the root to a null link has the same
number of black links.

Node implementation

Rotating and Flipping

• Right-leaning red
links or two red-
links in a row can
occur during
operations (add,
delete etc)

• This is corrected
using a left or right
rotate operation.

• May need to also
“flip” colours

Implementation

• Get source code at:
http://algs4.cs.princeton.edu/33balanced/Red
BlackLiteBST.java.html

http://algs4.cs.princeton.edu/33balanced/RedBlackLiteBST.java.html

Hash Tables

Hash Tables

• Using Key, Value pairs for data, if the
key values are integers then we can
interpret the key as the position in an
Array.
• For key i, store the value at location i in

an array
• Example(student Ids)

• Where keys are more complicated
(e.g. string, phone number), consider
Hashing.

• An example of Hashing is performing
arithmetic operations to transform
keys into array indices.
• Store value at the corresponding index.

Searching using Hash Tables

• Search algorithms that use hashing consist of two separate parts.
• a hash function that transforms the search key into an array index.

• collision-resolution process two or more different keys hash to the same array
index.

This can
happen

Hash Functions

• Consider an array that can hold M key-value pairs.

• This requires a Hash function that can transform a key to an integer
range 0 to M-1, [0,M-1].

• Hash function should compute index efficiently and evenly distribute
values from 0 to M-1 (uniform distribution).

Hashing Positive integers

• Modular Hashing:

1. Choose array of size M where M is a
prime number.

2. For an integer key k, compute k
modulo M. This gives the
remainder of k divided by M.

3. Produces uniform distribution from
0 to M-1

Hashing Floats

• Key is real number, k, between 0 and 1.

1. Choose array of size M where M is a prime number.

2. Multiply k by M and round to the nearest integer to get an index
between 0 and M-1.

3. Better way: Use modular hashing on the binary representation of
the key

Hashing Strings

• Treat Strings as huge integers.

1. Choose array of size M where M is a prime number.

2. Choose small prime number R.

3. The following computes a hash.

int hash = 0;

for (int i = 0; i < s.length(); i++)

hash = (R * hash + s.charAt(i)) % M;

Multiple Fields

• If the key type has multiple integer fields:
• Mix together as follows for Student object with strudentId, yearOfBirth, and

CourseId fields.

int hash = (((studentId * R + yearOfBirth) % M) * R + CourseId) % M;

Example of User Defined Hash Code

public class Transaction

{

...
private final String who;
private final Date when;
private final double amount;
public int hashCode(){

int hash = 17;
hash = 31 * hash + who.hashCode();
hash = 31 * hash + when.hashCode();
hash = 31 * hash + ((Double) amount).hashCode();
return hash;
}

...

}

References

http://algs4.cs.princeton.edu/home/

https://en.wikipedia.org/wiki/Binary_tree

http://algs4.cs.princeton.edu/home/
https://en.wikipedia.org/wiki/Binary_tree

