Algorithms

Eamonn de Leastar (edeleastar@wit.ie)

Waterford Institute of Technology

cy* g INSTINJID TECNEOLAIOCHTA PHORT LARCE
S

T


mailto:edleastar@wit.ie

Streams



Java Language

Tools &
Tool APIs

Deployment

User Interface

Toolkits
JDK Integration
Libraries
Other Base
JRE Librarios Java SE
API
lang and util Profiles
lana and util Math Collections Ref Objects Regular Expressions
Baselibrares ) ogging  Management  Instrumentation  Concurrency Utilities
Reflection  Versioning Preferences API JAR Zip
Java Virtual Machine Java HotSpot Client and Server VM

http://www.oracle.com/technetwork/java/javase/tech/index.html



http://www.oracle.com/technetwork/java/javase/tech/index.html

INntroduction

4 An |/O Stream represents an input source or an output
destination.

4 A stream can represent
< disk files
4 devices
% other programs

4 Streams support
< simple bytes
% primitive data types
¢ localized characters
< objects.

4 Some streams simply pass on data, others manipulate
and transform the data in useful ways.



Byte-Oriented Streams

ByteArrayOutputStream

ObjectinputStream

LineNumberlnputStream

PipedInputStream

PushbacklInputStream

SequencelnputStream

FileOutputStream / BufferedOutputStream

OutputStream FilterOutputStream DataOutputStream
\\ ObjectOutputStream \ PrintStream
PipedOutputStream
Object
ByteArraylnputStream
BufferedInputStream
FilelnputStream /
! /A DatalnputStream

InputStream FilterInputStream -«

StringBufferinputStream




Text Oriented Streams

BufferedWriter

CharArrayWriter

FilterWriter

Writer

OutputStreamWriter

FileWriter

PipedWriter

PrintWriter

StringWriter

Object

BufferedReader

LineNumberReader

CharArrayReader

Reader

FilterReader

PushbackReader

InputStreamReader

FileReader

PipedReader

StringReader




Input/Output Streams

4 A stream is a sequence of data.

4 A Java program uses an input stream to read data from
a source, one item at a time:

disk files
program [——,

device Data Source (0011010000)1001000011)1001010101)
socket |

array

Program

< A Java program uses an output stream to write data to a
destination, one item at time:

Program

Stream

Data
(0011010000 1001000011 )1001010101) Destination




Byte Streams

< Byte streams perform 1/O of
8-bit bytes.

< All byte stream classes are
descended from o
InputStream & /
OutputStream. [Cbiect

% To read/write from files, use \

ByteArrayOutputStream I

/l FileOutputStream

FilterOutputStream

BufferedOutputStream |

DataOutputStream |

ObjectOutputStream PrintStream |

PipedOutputStream

ByteArraylnputStream

BufferedInputStream |

FilelnputStream

DatalnputStream |

FilelInputStream and Linputsteam '{i'f;':e"”"“”‘ja”‘ CnetumberinputSiream]
jectinputStream
FileOutputStream. 1pipledmpztsneam Pushbackinputstrean_|

72\ 7\

] SequencelnputStream

% Other kinds of byte streams
are used much the same
way; they differ mainly in the
way they are constructed.

P ZAS R\

1 StringBufferlnputStream




public class CopyBytes

{

public static void main(String[] args) throws

{

FileInputStream in = null;
FileOutputStream out = null;
try

{

}

in = new FileInputStream("input.txt");

out = new FileOutputStream("final.txt")

int c¢;
while ((c = in.read()) !'= -1)
{

out.write(c);

}

finally

{

if (in '= null)
{

in.close () ;

}
if (out !'= null)
{

out.close();

}

CopyBytes

IOException



CopyBytes

< An int return type allows read() to

use -1 to indicate end of stream. . 'zpu;sgeal:n .
< CopyBytes uses a finally block to o
guarantee that both streams will be inputStrean.zead(b)
closed even if an error occurs. this l
helps avoid resource leaks. Ay
< |f CopyBytes was unable to open
one or both files the stream variable l

inputStream.write (b)
L

never changes from its initial null
value. Il n Xanadu
4 Byte streams should only be used oupastean
for the most primitive I/0.
< However, all other stream types are
built on byte streams.

v
d



Character Streams

< Java stores character -
values using Unicode / CharrayWirter ]
iiterWriter I

{I} Character Stream I/O Writer - FOlutp\:vtStreamWriter|—|FiIeWriter

automatically translates this \p.pedwme, |
PrintWriter I

to and from the local

StringWriter |

character set. C—
4 In Western locales, the local \ /h’*dydd :—ibdl
Character Set iS usua”y an |Reader éFilterReader |—|PushbackReader I

8-bit superset of ASCII. \Efdd :_"d I

< |/O with character stream
classes automatically
translates to/from the local
character set.

StringReader I




CopyCharacters

public class CopyCharacters
{
public static void main(String[] args) throws IOException
{
FileReader inputStream = null;
FileWriter outputStream = null;
try
{
inputStream = new FileReader ("input.txt");
outputStream = new FileWriter ("final.txt");
int c¢;
while ((c = inputStream.read()) !'= -1)
{
outputStream.write (c);
}
}
finally
{
if (inputStream !'= null)
{
inputStream.close() ;
}
if (outputStream != null)
{
outputStream.close () ;

}

10



CopyCharacters vs CopyBytes

¢ CopyCharacters is very similar to CopyBytes.
% CopyCharacters uses FileReader and FileWriter
% CopyBytes uses FilelnputStream and FileOutputStream.

© Both use an int variable to read to and write from.

< CopyCharacters int variable holds a character value in its last 16
bits
< CopyBytes int variable holds a byte value in its last 8 bits

4 Character streams are often "wrappers" for byte
streams.

< A byte stream to perform the physical I/0O

© The character stream handles translation between
characters and bytes.

¢ E.qg. FileReader uses FilelnputStream, while FileWriter
uses FileOutputStream. 1



Buffered |O

© So far we have used unbuffered I/0O:

<% Each read or write request is handled directly by the underlying
OS.

% Can be less efficient, since each such request often triggers
disk or network access.

- To reduce this kind of overhead use buffered I/O
streams.

¢ Read data from a memory area known as a buffer

<% Native input APl is called only when the buffer is empty.
¢ Buffered output streams write data to a buffer

<% Native output APl is called only when the buffer is full.

12



Line-Oriented |O

4 Character I/0O usually occurs in bigger units than single
characters.

4 One common unit is the line:
¢ a string of characters with a line terminator at the end.

< A line terminator can be
4 a carriage-return/line-feed sequence ("\r\n")
% a single carriage-return ("\r"), or a single line-feed ("\n").
© Supporting all possible line terminators allows programs

to read text files created on any of the widely used
operating systems.

13



public class CopyLines

{ CopyLines

public static void main(String[] args) throws IOException

{

BufferedReader inputStream = null;

PrintWriter outputStream = null;
try

{

inputStream = new BufferedReader (new FileReader ("xanadu.txt"));

outputStream = new PrintWriter (new FileWriter ("characteroutput.txt"));
String 1;
while ((1 = inputStream.readLine()) !'= null)

{
outputStream.println(l);
}
}
finally
{
if (inputStream !'= null)
{

inputStream.close () ;

}

if (outputStream != null)
{

outputStream.close() ;

}

14



BufferedReader

© An unbuffered stream can be converted into a
buffered stream using the wrapper idiom:

4 The unbuffered stream object is passed to the
constructor for a buffered stream class.

try
{
inputStream = new BufferedReader (new FileReader ("input.txt"));
outputStream = new PrintWriter (
new BufferedWriter (
new FileWriter ('"characteroutput.txt")))

String 1;

while ((1 = inputStream.readLine()) !'= null)

{
outputStream.println(l);

}
}

15



Flushing Buffers

4 There are four buffered stream classes used to wrap
unbuffered streams:

¢ BufferedlnputStream and BufferedOutputStream for byte
streams,

¢ BufferedReader and Buffered\Writer for character streams.
< It often makes sense to write out a buffer at critical points,
without waiting for it to fill.
<% This is known as flushing the buffer.

4 Some buffered output classes support autoflush,
specified by an optional constructor argument.

< When autoflush is enabled, certain key events cause the
buffer to be flushed. For example, an autoflush PrintWriter
object flushes the buffer on every invocation of printin or
format.

¢ To flush a stream manually, invoke its flush method.

16


http://java.sun.com/javase/6/docs/api/java/io/BufferedInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedOutputStream.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedReader.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedWriter.html

Scanning

% Objects of type Scanner break input into tokens and
translate individual tokens according to their data type.

< By default, a scanner uses white space to separate
tokens.

% To use a different token separator, invoke useDelimiter(),
specifying a regular expression.

% Even though a scanner is not a stream, you need to
close it to indicate that you're done with its underlying

stream.

17


http://java.sun.com/javase/6/docs/api/java/util/Scanner.html

ScanFile

public class ScanFile

{
public static void main(String[] args) throws IOException

{

Scanner s = null;
try
{
s = new Scanner (new BufferedReader (

new FileReader ("input.txt")));
while (s.hasNext())
{
System.out.println(s.next());
}
}
finally
{
if (s !'= null)
{

s.close();

}

18



Translating Individual Tokens

public class ScanSum

{

public static void main(String[] args) throws IOException
{

Scanner s = null;

double sum = 0;

try
{

s = new Scanner (new BufferedReader (new FileReader ("usnumbers.txt")));
while (s.hasNext())
{

if (s.hasNextDouble())

{

sum += s.nextDouble () ;
}
else
{
s.next (),
}
}
}
finally
{

s.close () ;

}

System.out.println (sum) ;

}



Translating Individual Tokens

© ScanSum reads a list of double values and adds them
up

% The ScanFile example treats all input tokens as simple
String values.

% Scanner also supports tokens for all of the Java
language's primitive types as well as Biglnteger and
BigDecimal.

20



Command Line I/O

% A program is often run from the command line, and
Interacts with the user in the command line
environment.

< The Java platform supports this kind of interaction in
two ways:

< Standard Streams
- Console.

21



Standard Streams

4 A feature of many operating systems, they read input
from the keyboard and write output to the display.

4 They also support I/O on files and between programs
(controlled by the shell).

4 The Java platform supports three Standard Streams:
% Standard Input, accessed through System.in;

% Standard Output, accessed through System.out;
¢ Standard Error, accessed through System.err.

% These objects are defined automatically (do not need to
be opened)

% Standard Output and Standard Error are both for output

< Having error output separately allows the user to divert
regular output to a file and still be able to read error
messages.

22



System.in, System.out, System.err

% For historical reasons, the standard streams are byte
streams (more logically character streams).

¢ System.out and System.err are defined as PrintStream

objects.

< Although it is technically a byte stream, PrintStream
utilizes an internal character stream object to emulate
many of the features of character streams.

< By contrast, System.in is a byte stream with no
character stream features.

4 To utilize Standard Input as a character stream, wrap
System.in in InputStreamReader.

InputStreamReader cin = new InputStreamReader(System.in);

23


http://java.sun.com/javase/6/docs/api/java/io/PrintStream.html

Console

« New for Java 6 - a more advanced alternative to the
Standard Streams

4 This is a single pre-defined object of type Console that
has most of the features provided by the Standard
Streams.

< The Console object also provides input and output
streams that are true character streams, through its
reader and writer methods.

< Before a program can use the Console, it must attempt
to retrieve the Console object by invoking
System.console|).
< |f the Console object is available, this method returns it.

< If it returns NULL, then Console operations are not permitted,
either because the OS doesn't support them, or because the
program was launched in a non-interactive environment.

24


http://java.sun.com/javase/6/docs/api/java/io/Console.html

Password Entry

% The Console object supports secure password entry
through its readPassword method.

% This method helps secure password entry in two ways. it
suppresses echoing, so the password is not visible on the users
screen.

% readPassword returns a character array, not a String, so that the
password can be overwritten, removing it from memory as soon
as it is no longer needed.

25



Password (1)

public class Password

{

public static void main(String[] args) throws IOException

{

Console c = System.console();,

if (¢ == null)

{
System.err.println("No console.");,
System.exit (1),

}

String login = c.readLine("Enter your login: ");
char[] oldPassword = c.readPassword("Enter your old password:

//..

");

20



Password (2)

//..
if (verify(login, oldPassword))
{

boolean noMatch;

do

{
char[] newPasswordl = c.readPassword("Enter your new password: ");
char[] newPassword2 = c.readPassword("Enter new password again: ");
noMatch = !'Arrays.equals (newPasswordl, newPassword?) ;

if (noMatch)
{
c.format ("Passwords don't match. Try again.%n");

}

else
{
change (login, newPasswordl)
c.format ("Password for %s changed.%n", login);

}

Arrays.fill (newPasswordl, ' ');
Arrays.fill (newPassword2, ' ');

}
while (noMatch) ;

}
Arrays.fill (oldPassword, ' ');

}



Method Summary

vold|fiushi()
Flushes the console and forces any buffered output to be written immediately .
Console foymat (String frt, Object... args)

Writes a formatted string to this console's output stream using the specified format string
and arguments.

Console

printf (String format, Object... args)
A conventence method to write a formatted string to this console's output stream using
the specified format string and arguments.

Reader |reader ()

Retrieves the unique Reader object associated with this console.
String|readLine ()

Reads a single line of text from the console.
String|readLine (String fmt, Object... args)

Prowides a formatted prompt, then reads a single line of text from the console.
char[] |readPassword()

Reads a password or passphrase from the console with echoing disabled
char[] |readPassword (String fmt, Object... args)

Prowides a formatted prompt, then reads a password or passphrase from the console

with echoing disabled.
PrintWriter griter ()

Retnieves the unique PrintUriter object associated with this console.

28



Data Streams

¢ Data streams support binary

I/O of primitive data type
values (boolean, char, byte,

ByteArrayOutputStream

FlIeOutputStream

I BufferedOutputStream I

[ OutputStream

FnlterOutputStream

DataOutputStream I

short, int, long, float, and
double) as well as String

ObjectOutputStream

| NPrintStream |

/ \

I Object

PipedOutputStream

values.
4 All data streams implement

ByteArraylnputStream

Buffered InputStream I

/

FilelnputStream

DatalnputStream

| InputStream

FllterlnputStream

either the Datalnput interface
or the DataOutput interface.

< The most widely-used
iImplementations of these
interfaces are
DatalnputStream and
DataOutputStream.

DA

LmeNumberlnputStream I

\\[ ObjectinputStream

PushbacklnputStream |

|

PipedinputStream

1 SequencelnputStream

StringBufferlnputStream

29


http://java.sun.com/javase/6/docs/api/java/io/DataInput.html
http://java.sun.com/javase/6/docs/api/java/io/DataOutput.html
http://java.sun.com/javase/6/docs/api/java/io/DataInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/DataOutputStream.html

DataStream (1)

public class DataStream
{
static final String dataFile = '"invoicedata';,
static final double[] prices { 19.99, 9.99, 15.99, 3.99, 4.99 };
static final int[] units = { 12, 8, 13, 29, 50 },
static final String[] descs = { "Java T-shirt", "Java Mug",
"Duke Juggling Dolls",
"Java Pin", "Java Key Chain"};

public static void main(String[] args) throws IOException
{
DataOutputStream out = new DataOutputStream (
new BufferedOutputStream(new FileOutputStream(dataFile)));,

for (int 1 = 0; i < prices.length,; i++)
{
out.writeDouble (prices[i]),
out.writeInt(units[i]),
out.writeUTF (descs[i]),

}

out.close() ;

//..continued



DataStream (2)

DataInputStream in = new DataInputStream/(
new BufferedInputStream (
new FileInputStream(dataFile)));,

double price;
int unit;
String desc;
double total = 0.0;
try
{
while (true)
{
price = in.readDouble() ;
unit = in.readInt();
desc = in.readUTF() ;
System. out. format ("You ordered %d units of $%$s at $%.2f%n"

unit, desc, price);,

4

total += unit * price;
}
}
catch (EOFException e)
{
System.out.println("End of file'");,
}

31



Data Streams Observations

4 The writeUTF method writes out String values in a
modified form of UTF-8.

< A variable-width character encoding that only needs a single
byte for common Western characters.
4 Generally, we detects an end-of-file condition by
catching EOFException, instead of testing for an invalid
return value.

% Each specialized write in DataStreams is exactly
matched by the corresponding specialized read.

% Floating point numbers not recommended for monetary
values
<% In general, floating point is bad for precise values.
< The correct type to use for currency values is
jJava.math.BigDecimal.
< Unfortunately, BigDecimal is an object type, so it won't
work with data streams — need Object Streams. 32



http://java.sun.com/javase/6/docs/api/java/io/EOFException.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html

Object Streams

4 Data streams support I/0O of primitive data types, object
streams support I/0O of objects.
< A class that can be serialized implements the marker interface
Serializable.
4 The object stream classes are ObjectinputStream and
ObjectOutputStream.

< They implement Objectinput and ObjectOutput, which are
subtypes of Datalnput and DataOutput.

< Thus all the primitive data I/O methods covered in Data Streams
are also implemented in object streams.

% An object stream can contain a mixture of primitive and object
values
< If readObiject() doesn't return the object type expected,
attempting to cast it to the correct type may throw a
ClassNotFoundException.

33


http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://java.sun.com/javase/6/docs/api/java/io/ObjectInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/ObjectOutputStream.html
http://java.sun.com/javase/6/docs/api/java/io/ObjectInput.html
http://java.sun.com/javase/6/docs/api/java/io/ObjectOutput.html
http://java.sun.com/javase/6/docs/api/java/lang/ClassNotFoundException.html

public class ObjectStreams O bJ eCtSteam S

{

static final String dataFile = '"invoicedata'";,
static final BigDecimal[] prices = {new BigDecimal (""19.99"),
new BigDecimal ("9.99"),
new BigDecimal ("15.99"),
new BigDecimal ("3.99"),
new BigDecimal ("4.99") };
static final int[] units = { 12, 8, 13, 29, 50 };,
static final String[] descs = { "Java T-shirt", "Java Mug",
"Duke Juggling Dolls",
"Java Pin", "Java Key Chain" };
public static void main(String[] args)
throws IOException, ClassNotFoundException
{
ObjectOutputStream out = null;
try
{
out = new ObjectOutputStream (
new BufferedOutputStream(new FileOutputStream(dataFile)));,
out.writeObject (Calendar.getInstance()),
for (int i = 0; i < prices.length; i++)
{
out.writeObject(prices([i]) ,
out.writelInt(units[i]);,
out.writeUTF (descs[i]),
}
}
finally
{
out.close() ;
}
//..
}



ObjectInputStream in = null;

o ObjectsStreams(?)

in = new ObjectInputStream (
new BufferedInputStream(new FileInputStream(dataFile)));,
Calendar date = null;
BigDecimal price;
int unit;
String desc;
BigDecimal total = new BigDecimal (0) ;

date = (Calendar) in.readObject();

System.out. format ("On %tA, $%<tB $%$<te, %<tY:%n", date);,
try
{
while (true)
{
price = (BigDecimal) in.readObject();
unit = in.readInt();
desc = in.readUTF() ;
System.out. format ("You ordered %d units of %s at $%.2f%n",unit, desc, price);
total = total.add(price.multiply (new BigDecimal (unit)));
}
}
catch (EOFException e)
{
}
System.out. format ("For a TOTAL of: $%.2f%n", total);
}
finally
{

in.close();

}

35



readObject() and writeObject()

4 The writeObject and readObject methods contain some
sophisticated object management logic.

< This particularly important for objects that contain
references to other objects.

< If readObiject is to reconstitute an object from a stream,
It has to be able to reconstitute all the objects the
original object referred to.

% These additional objects might have their own references, and
SO On.

4 |n this situation, writeObject traverses the entire web of
object references and writes all objects in that web onto
the stream. Thus a single invocation of writeObject can
cause a large number of objects to be written to the
stream.

36



Stream
writeObject (a) —P cedba —p readObject ()

£ £
d/b\\e c d/b\e c

¢ Suppose:

< If writeObject is invoked to write a single object named a.

% This object contains references to objects b and c,
<% while b contains references to d and e.

4 Invoking writeobject(a) writes a and all the objects necessary
to reconstitute a

4 When a is read by readObject, the other four objects are
read back as well, and all the original object references are

preserved. -



Streams in TDD-04 Lab

public interface Serializer
{
vold push(Object 0);
Object pop();
vold write() throws Exception;
void read() throws Exception;

4 A Specification for a general purpose serialisation
mechanism

< We can devise various implementations of this interface
to use specific serialisation strategies.

38



XMVLSerializer -

public class XMLSerializer implements Serializer

{
pr‘?vate S’Fack §tack = new Stack(); . .
private File file; 4 Enable an application to
?ublic XMLSerializer(File file) ‘push’ Varlous ObJeCtS
, this.file = file; onto a Stack
oublic void push(Object o) < At some suitable time,
b tack.pushCod: write this entire stack to a
’ file
ublic Object O . .
A 4 Subsequently, this entire

return stack. O;

} " stack can be read back
public void read() throws Exception and recovered (pOpped)
b by the application.
public void write() throws Exception
{ ...}

ks

41



XMLSerializer - write()

public class XMLSerializer implements Serializer

{

public void write() throws Exception

{
ObjectOutputStream os = null;

try

{
XStream xstream = new XStream(new DomDriver());
0s = xstream.createObjectOutputStream(new FileWriter(file));
os.writeObject(stack);

ks
finally
{
if (os !'= null)
{
os.close();
ks
}
ks

42



XMLSerializer - read()

public class XMLSerializer implements Serializer

{

public void read() throws Exception

{
ObjectInputStream is = null;

try

{
XStream xstream = new XStream(new DomDriver());
1s = xstream.createObjectInputStream(new FileReader(file));
stack = (Stack) is.readObject();

ks
finally
{
if (is !'= null)
{
is.close();
ks
ks

}

43



public class PacemakerAPI

{

private Serializer serializer;

private Map<Long, User>  userIndex
private Map<String, User>  emailIndex
private Map<Long, Activity> activitiesIndex

new HashMap<>();
new HashMap<>();
new HashMap<>();

% Using the
Serializer from

public PacemakerAPI(Serializer serializer)

{ the

this.serializer = serializer;

} PacemakerAPI

@SuppressWarnings("unchecked™)
public void load() throws Exception

{

public PacemakerAPI()
{3

serializer.read();
activitiesIndex
emailIndex
userIndex

(Map<Long, Activity>) serializer.pop(Q);
(Map<String, User>) serializer.pop();
(Map<Long, User>) serializer.pop();

}

void store() throws Exception

{
serializer.push(CuserIndex);
serializer.push(emailIndex);
serializer.push(activitiesIndex);
serializer.write();

: 44




<object-stream>
<java.util.Stack serialization="custom">
<unserializable-parents/>
<vector>
<default>
<capacityIncrement>0</capacityIncrement>
<elementCount>3</elementCount>
<elementData>
<map>
<entry>
<long>0</1long>
<models.User>
<1d>0</1d>
<firstName>Bart</firstName>
<lastName>Simpson</lastName>
<email>bart@simpson.com</email>
<password>secret</password>
<activities/>
</models.User>
</entry>
<entry>
<long>1</long>
<models.User>
<id>1</1d>
<firstName>Homer</firstName>
<lastName>Simpson</lastName>
<email>homer@simpson.com</email>
<password>secret</password>
<activities>
<entry>
<long>0</1long>
<models.Activity>
<1d>0</1d>
<type>walk</type>
<location>tramore</location>

3 object-stream

¥ [e] java.util.Stack
serialization custom
[e] unserializable-parents
¥ [e] vector
¥ [e] default
[e] capacitylncrement 0
[e] elementCount 3
¥ [e] elementData
¥ [e] map
¥ [e] entry
[e] leng 0
¥ [e] medels.User
[e]id 0
[e] firstName Bart
[e] lastName Simpson
[e] email bart@simpson.com
[e] password secret
[e] activities
¥ [e] entry
[e] long 1
¥ [e] models.User
[elid 1
(] firstName Homer
[e] lastName Simpson
[e] email homer@simpson.com
[e] password secret
P [e] activities
¥ [e] entry
[e] long 2
> €] models.User
¥ [e] map
¥ [e] entry
[e] string homer@simpson.com
¥ [e] models.User
reference ..[..J../map/entry[2]/mocdels.User
¥ [e] entry
[€] string lisa@simpson.com
¥ [e] medels.User
reference ..f..J../map/entry[3]/models.User
¥ [e] entry
[€] string bart@simpson.com
¥ [e] models.User
reference ..J..J../map/entry/models.User
¥ [e] map
¥ [e] entry
[e] long 0
b (ol models Activity




OIS

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

Waterford Institute of Technology 0 elLearning

Ir;l.}..‘ 5 WNSTITUID TE CNEOLAIOCHTA PHORT LARGE su ppOr[ u HIL

e



