
Assignment 2 Bootstrap

The API + Command Line Specification

Walking Skeleton

Walking Skeleton : http://alistair.cockburn.us/Walking+skeleton

• “A Walking Skeleton is a
tiny implementation of the
system that performs a
small end-to-end function.

• It need not use the final
architecture, but it should
link together the main
architectural components.

• The architecture and the
functionality can then evolve
in parallel.”

• Useful strategy to get started…

• Enables you to make small
incremental improvements
from a solid foundation

http://alistair.cockburn.us/Walking+skeleton

Walking Skeleton Project

• Create an Eclipse project with:

• “src” and “test” folders

• best guess at suitable
packages

• Initial versions classes you
think you will need - largely
empty for the first version

• Libraries

Building a Walking Skeleton for Assignment 2

• What are the likely initial Objects?

• What data structures will be
appropriate?

• How will the API be
implemented?

• What strategy is to be used for
the command line?

• How will the tests be organised?

• What is the persistence strategy?

Give the
Project a
Name!

likemovie

• What are the likely initial Objects?

• What data structures will be appropriate?

• How will the API be implemented?

• What strategy is to be used for the command line?

• How will the tests be organised?

• What is the persistence strategy?

• Where do I start?

Initial Candidate Objects

• Model

• User

• Movie

• Rating

• LikeMoviesAPI

• CommandShell

• Serialisers?

What data structures will be appropriate?

• Map of userId->User

• Map of movieId->Movie

• Ratings?

• Each user holds a list of
ratings objects

User Movie

Rating

How will the API be implemented?

• Define a single
LikeMoviesAPI class

• Define the data structured
(userIndex, moviesIndex) as
members of the API class

• Define a suitable method
signature for each of the
features listed here

• API does not include any UX

Command Line

• DON’T roll your
own

• Use a suitable
library

Testing

• Create a separate top level
‘source folder’ for all tests

• Mirror the ‘src’ package structure
in this folder

• Create one test class for each
‘src’ class

Persistence

• Use a suitable
high level library

• Single file to
store entire
object model

• Alternatives?

Where do I Start!

Plan for Assignment 2

• Build Walking Skeleton

• Break features into simple ‘Stories’

• Reorder the stories into simplest to implement first

• For each story:

• Write a test

• Implement the necessary features

• Implement and verify the command

Build Walking Skeleton

• Define very simple model
objects : User & Movie

• Implement tests for these

• Implement Simple command for
add and list all users

• Create skeleton version classes
you think you will need (even if
they are empty)

Stories
• add a user

• add a movie

• remove a user

• get a movies details

• rate a movie

• get a users ratings

• get the top ten movies (by all ratings)

• for a given user, get recommendations for that user (recommendation algorithm)

• read the movie db from an external css file

• save / load the main application model

Organise Stories
• Projects are usually implemented

in ‘Iterations’

• Each Iteration starts with a subset
of stories the iteration will tackle

• For each story in the iteration:

• Write a test

• Implement sufficient features for
the test to pass

• Refactor to improve the
implementation

Iteration Plan (suggestion)
• Iteration I

• add a user

• add a movie

• remove a user

• get a movies details

• Iteration II

• rate a movie

• get a users ratings

• Iteration III

• save / load the main
application model (to XML or
JSON)

• read the initial movie db from
an external csv file

• Iternation IV

• get the top ten movies (by all
ratings)

• for a given user, get
recommendations for that user
(recommendation algorithm)

Walking Skeleton - Extracts

• This skeleton closely modelled on
pacemaker

• the ‘utils’ package can be carried
over as is

• API and Main mirror the pacemaker
organisation:

• API - no UI, just manage the data

• Main - deal with all UI via cliche

Walking
Skeleton - Model

• User

public class User
{
 static Long counter = 0l;

 public Long id;
 public String firstName;
 public String lastName;
 public String gender;
 public String age;
 public String occupation;

 public List<Rating> ratings = new ArrayList<>();

 public User(String firstName, String lastName, String gender, String age, String occupation)
 {
 this.id = counter++;
 this.firstName = firstName;
 this.lastName = lastName;
 this.gender = gender;
 this.age = age;
 this.occupation = occupation;
 }

 public String toString()
 {
 return new ToJsonString(getClass(), this).toString();
 }

 @Override
 public int hashCode()
 {
 return Objects.hashCode(this.lastName, this.firstName, this.gender, this.age);
 }

 @Override
 public boolean equals(final Object obj)
 {
 if (obj instanceof User)
 {
 final User other = (User) obj;
 return Objects.equal(firstName, other.firstName)
 && Objects.equal(lastName, other.lastName)
 && Objects.equal(gender, other.gender)
 && Objects.equal(age, other.age)
 && Objects.equal(occupation, other.occupation)
 && Objects.equal(ratings, other.ratings);
 }
 else
 {
 return false;
 }

• Movie

public class Movie
{
 static Long counter = 0l;

 public Long id;

 public String title;
 public String year;
 public String url;

 public Movie(String title, String year, String url)
 {
 this.id = counter++;
 this.title = title;
 this.year = year;
 this.url = url;
 }

 @Override
 public String toString()
 {
 return new ToJsonString(getClass(), this).toString();
 }

 @Override
 public int hashCode()
 {
 return Objects.hashCode(this.id, this.title, this.year, this.url);
 }

 @Override
 public boolean equals(final Object obj)
 {
 if (obj instanceof Movie)
 {
 final Movie other = (Movie) obj;
 return Objects.equal(title, other.title)
 && Objects.equal(year, other.year)
 && Objects.equal(url, other.url);
 }
 else
 {
 return false;
 }
 }
}

Walking
Skeleton - Model

Walking Skeleton - User & Movie Tests

?
(see pacemaker)

Walking Skeleton - LikeMoviesAPI

public class LikeMoviesAPI
{
 public Map<Long, User> userIndex = new HashMap<>();
 public Map<Long, Movie> movieIndex = new HashMap<>();

 public LikeMoviesAPI()
 {}

 public User addUser(String firstName, String lastName, String age, String gender, String occupation)
 {
 User user = new User (firstName, lastName, age, gender, occupation);
 userIndex.put(user.id, user);
 return user;
 }

 public Movie addMovie(String title, String year, String url)
 {
 Movie movie = new Movie (title, year, url);
 movieIndex.put(movie.id, movie);
 return movie;
 }
}

Walking Skeleton - LikeMoviesAPITest

?
(see pacemaker)

Walking Skeleton Main (command line)

public class Main
{
 public LikeMoviesAPI likeMovies;

 @Command(description="Add a new User")
 public void addUser (@Param(name="first name") String firstName, @Param(name="last name") String lastName,
 @Param(name="age") String age, @Param(name="gender") String gender, @Param(name="occupation") String occupation)
 {
 likeMovies.addUser(firstName, lastName, age, gender, occupation);
 }

 @Command(description="Delete a User")
 public void removeUser (@Param(name="id") Long id)
 {
 likeMovies.removeUser(id);
 }

 @Command(description="Add a Movie")
 public void addMovie (@Param(name="title") String title, @Param(name="year") String year, @Param(name="url") String url)
 {
 likeMovies.addMovie(title, year, url);
 }

 public static void main(String[] args) throws Exception
 {
 Main main = new Main();

 Shell shell = ShellFactory.createConsoleShell("lm", "Welcome to likemovie - ?help for instructions", main);
 shell.commandLoop();

 main.likeMovies.store();
 }
}

Command line test -

• Run Script?

• This command lets
you run a ‘batch’ of
commands from a
file.

• You could have a
file with many
commands like this

• Have !rs run the file
to load load the
application with test
data

Welcome to likemovie - ?help for instructions
lm> ?help
This is Cliche shell (http://cliche.sourceforge.net).
To list all available commands enter ?list or ?list-all, the
latter will also show you system commands. To get detailed
info on a command enter ?help command-name
lm> ?list-all
abbrev name params
!rs !run-script(filename)
!el !enable-logging (fileName)
!dl !disable-logging ()
!gle !get-last-exception ()
!sdt !set-display-time (do-display-time)
?l ?list ()
?l ?list (startsWith)
?h ?help ()
?h ?help (command-name)
?la ?list-all ()
?ghh ?generate-HTML-help (file-name, include-prefixed)
am add-movie (title, year, url)
au add-user (first name, last name, age, gender,
occupation)
lm> add-user homer simpson 45 male genius
lm> add-movie thesimpsons 2005 www.thesimpsons.com
lm> exit

Iteration Plan (suggestion)
• Iteration I

• add a user

• add a movie

• remove a user

• get a movies details

• Iteration II

• rate a movie

• get a users ratings

• Iteration III

• save / load the main
application model (to XML or
JSON)

• read the initial movie db from
an external csv file

• Iternation IV

• get the top ten movies (by all
ratings)

• for a given user, get
recommendations for that user
(recommendation algorithm)

Learn from Pacemaker Repo History

Reset - in
Eclipse -
to any
specific
revision

• Select a
revision - and
‘Checkout”

• Project will
reset to that
particular
version

HEAD

• During checkout - HEAD
will be DETACHED

• This means you cant
make changes at that
point, just browse and
run the program.

• Explore
exactly
how each
features
was
introduced
via github
site

Alternatively - use Sourcetree

