
Produced
by

Algorithms

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Collections

Overview
± Collections Architecture

± Definition
± Architecture

± Interfaces
± Collection
± List
± Set
± Map
± Iterator

± Implementations
± ArrayList
± HashMap
± HashSet

± Java 5 Generic Collections
± Untyped vs Typed syntax
± For-each loop

Overview
± Collections Architecture

± Definition
± Architecture

± Interfaces
± Collection
± List
± Set
± Map
± Iterator

± Implementations
± ArrayList
± HashMap
± HashSet

± Java 5 Generic Collections
± Untyped vs Typed syntax
± For-each loop

What are Collections?

± Collections are Java objects used to store, retrieve, and
manipulate other Java objects
± Any Java object may be part of a collection, so collection can

contain other collections
± Collections do not store primitives
±Java collection architecture includes:

±Interfaces - abstract data types representing collections
±Implementation - concrete implementation of collection

interfaces
±Algorithms - methods for manipulating collection objects

Collection Architecture

±Collection framework benefits include:
±Reusability
±Uniformity
±Faster development
±Higher quality
±Interoperability
±Less programming

Collection Architecture

Interfaces

• Collection “uses” Iterator
• Map “uses” Collection
• Set extends Collection (subtyping)
• List extends Collection (subtyping)

Interfaces
± Collections Architecture

± Definition
± Architecture

± Interfaces
± Collection
± List
± Set
± Map
± Iterator

± Implementations
± ArrayList
± HashMap
± HashSet

± Java 5 Generic Collections
± Untyped vs Typed syntax
± For-each loop

Collection Interface

± Collection represents a group of objects
± These collection objects are known as collection elements

± There is no direct implementation of this interface in JDK
± Concrete implementations are provided for subtypes

± Collections in general can allow duplicate elements, and
can be ordered
± Unordered collections that allow duplicate elements should

implement directly Collection interface

Adding Elements

± In general two methods are defined for adding elements to
the collection:

interface Collection
{
 //…
 /**
 * Adds element to the receiver.
 * Returns true if operation is successful, otherwise return s false.
 */
 boolean add(Object element);

 /**
 * Adds each element from collection c to the receiver.
 * Returns true if operation is successful, otherwise returns false.
 */
 boolean addAll(Collection c);
}

Removing Elements

interface Collection
{
 //…
 /**
 * Removes element from the receiver.
 * Returns true if operation is successful, otherwise returns false.
 */
 boolean remove(Object element);

 /**
 * Removes each element contained in collection c from the receiver.
 * Returns true if operation is successful, otherwise returns false.
 */
 boolean removeAll(Collection c);
}

± Similarly to adding protocol, there are two methods are
defined for removing elements from the collection:

Other Collection Methods

± Includes methods for:
± Checking how many elements are in the collection
± Checking if an element is in the collection
± Iterating through collection

boolean contains(Object element);
boolean containsAll(Collection c);
int size();
boolean isEmpty();
void clear();
boolean retainAll(Collection c);
Iterator iterator;

Iterator Interface
± Defines a protocol for iterating through a collection:

public interface Iterator
{
 /**
 * Returns whether or not the underlying collection has next
 * element for iterating.
 */
 boolean hasNext();

 /**
 * Returns next element from the underlying collection.
 */
 Object next();

 /**
 * Removes from the underlying collection the last element returned by next.
 */
 void remove();
}

Set Interface

± Set is a collection that does not contain duplicate elements
± This is supported by additional behavior in constructors and add(),

hashCode(), and equals() methods
± All constructors in a set must create a set that does not contain

duplicate elements
± It is not permitted for a set to contain itself as an element
± If set element changes, and that affects equals

comparisons, the behavior of a set is not specified

List Interface

± List represents an ordered collection
± Also known as sequence

± Lists may contain duplicate elements
± Lists extend behavior of collections with operations for:

± Positional Access
± Search
± List Iteration
± Range-view

Map Interface

± Map is an object that maps keys to values
± Keys must be unique, i.e. map cannot contain duplicate keys
± Each key in the map can map to most one value, i.e. one key

cannot have multiple values
± Map interface defines protocols for manipulating keys and

values

Collections
± Collections Architecture

± Definition
± Architecture

± Interfaces
± Collection
± List
± Set
± Map
± Iterator

± Implementations
± ArrayList
± HashMap
± HashSet

± Java 5 Generic Collections
± Untyped vs Typed syntax
± For-each loop

Most Commonly Used Collections

± Three of the most
commonly used
collections:
± HashSet
± ArrayList
± HashMap

ArrayList

± Represents resizable-array implementation of the List
interface
± Permits all elements including null

± It is generally the best performing List interface
implementation

± Instances of this class have a capacity
± It is size of the array used to store the elements in the list, and it’s

always at least as large as the list size
± It grows as elements are added to the list

ArrayList Examples
//declare list
ArrayList list = new ArrayList();

//add elements to the list
list.add("First element");
list.add("Second element");

//get the list size
int listSize = list.size();

//print the list size and the first element
System.out.println(listSize);
System.out.println(list.get(0));

//add first element in the list
list.add(0,"Added element");

//get the list iterator
Iterator iterator = list.iterator();
while (iterator.hasNext())
{
 String element = (String)iterator.next();
 System.out.println(element);
}

2
First element

Console

Added element
First element
Second element

Console

HashMap
± Collection that contains pair of objects

± Values are stored at keys
± It is a hash table based implementation of the Map interface

± Permits null values and null keys
± The order of the map is not guaranteed

± Two parameters affect performance of a hash map:
± Initial capacity, indicates capacity at the map creation time
± Load factor, indicates how full the map should be before increasing its

size
±0.75 is the default

HashMap Example
//create a number dictionary
HashMap numberDictionary = new HashMap();
numberDictionary.put("1", "One");
numberDictionary.put("2", "Two");
numberDictionary.put("3", "Three");
numberDictionary.put("4", "Four");
numberDictionary.put("5", "Five");

//get an iterator of all the keys
Iterator keys = numberDictionary.keySet().iterator();
while (keys.hasNext())
{
 String key = (String)keys.next();
 String value = (String)numberDictionary.get(key);
 System.out.println("Number: " + key + ", word: " + value);
}

Number: 5, word: Five
Number: 4, word: Four
Number: 3, word: Three
Number: 2, word: Two
Number: 1, word: One

Console

HashSet

± Concrete implementation of the Set interface
± Backed up by an instance of HashMap
± Order is not guaranteed

± Performance of the set is affected by size of the set and
capacity of the map
± It is important not to set the initial capacity too high, or the load

factor too low if performance of iteration is important
± Elements in the set cannot be duplicated

HashSet Example

//create new set
HashSet set = new HashSet();

//add elements to the set
set.add("One");
set.add("Two");
set.add("Three");

//elements cannot be duplicated in the set
set.add("One");

//print the set
System.out.println(set); [One, Three, Two]

Console

Collections
± Collections Architecture

± Definition
± Architecture

± Interfaces
± Collection
± List
± Set
± Map
± Iterator

± Implementations
± ArrayList
± HashMap
± HashSet

± Java 5 Generic Collections
± Untyped vs Typed syntax
± For-each loop

Java 5 Generic Collection
± Collections use polymorphism to store objects of any type.
± A drawback is type loss on retrieval.

HashMap numberDictionary = new HashMap();

numberDictionary.put("1", "One");
numberDictionary.put("2", "Two");

Object value = numberDictionary.get("1”);
String strValue = (String) value;

± HashMap stores
key/value pairs
as java Objects.

± get() method
returns a
matching Object
for the given key.

± The key/values in this code are actually Strings
± The return value must be type cast back to a String in order

to accurately recover the stored object.

Untyped = Unsafe

± Type casting is undesirable (due to possibility of run time
errors).

± Therefore, use of untyped (pre-Java 5) collections is
considered ‘unsafe’.

± Typed collections avoid type loss.
± Runtime checks are simplified because the type is known.

Revised syntax

± The type of object to be stored is indicated on declaration:  
private ArrayList<String> notes;

±... and on creation:  
notes =  
 new ArrayList<String>();

± Collection types are parameterized.

Using a typed collection
ArrayList list = new ArrayList();

list.add("First element");
list.add("Second element");

String first = (String)list.get(0);
String second = (String)list.get(1);

ArrayList<String> list = new ArrayList<String>();

list.add("First element");
list.add("Second element");

String first = list.get(0);
String second = list.get(1);

untyped / unsafe

typed / safe

Using a Typed Iteration
ArrayList list = new ArrayList();

Iterator iterator = list.iterator();
while (iterator.hasNext()
{
 String element = (String)iterator.next();
 System.out.println(element);
}

ArrayList<String> list = new ArrayList<String>();

Iterator<String> iterator = list.iterator();
while (iterator.hasNext())
{
 String element = iterator.next();
 System.out.println(element);
}

untyped / unsafe

typed / safe

Typed HashMaps

±HashMaps operate with (key,value) pairs.
±A typed HashMap required two type parameters: 
 
private HashMap<String, String> responses;  
...  
responses = new HashMap<String, String> ();

HashMaps
HashMap numberDictionary = new HashMap();

numberDictionary.put("1", "One");
numberDictionary.put("2", "Two");

Object value = numberDictionary.get(“1”);
String strValue = (String) value;

HashMap<String,String> numberDictionary =
 new HashMap<String,String>();

numberDictionary.put("1", "One");
numberDictionary.put("2", "Two");

String value = numberDictionary.get(“1”);

untyped / unsafe

typed / safe

For-each Loop
± Iteration over collections is a common operation.
± If a collections provides an Iterator, Enhanced for loop

simplifies code
ArrayList<String> list = new ArrayList<String>();
//…
Iterator <String> iterator = list.iterator();
while (iterator.hasNext())
{
 String element = iterator.next();
 System.out.println(element);
}

ArrayList<String> list = new ArrayList<String>();
//…
for (String element : list)
{
 System.out.println(element);
} For-each loop

Standard while loop

Review
± Collections Architecture

± Definition
± Architecture

± Interfaces
± Collection
± List
± Set
± Map
± Iterator

± Implementations
± ArrayList
± HashMap
± HashSet

± Java 5 Generic Collections
± Untyped vs Typed syntax
± For-each loop

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

