Algorithms

Eamonn de Leastar (edeleastar@wit.ie)

\ Waterford Institute of Technology elLearning _
Im\7 o) INSTITIOND TECNEOLAIOCHTA PHORT LARCGE su pport unit

T

mailto:edleastar@wit.ie

Collections

Overview

< Collections Architecture
© Definition
© Architecture

< Interfaces
< Collection
4 List
4 Set
< Map
% |terator

< Implementations
% ArrayList
< HashMap
¢ HashSet

4 Java 5 Generic Collections
% Untyped vs Typed syntax
< For-each loop

Overview

< Collections Architecture
© Definition
© Architecture

< Interfaces
< Collection
4 List
4 Set
< Map
% |terator

< Implementations
% ArrayList
< HashMap
¢ HashSet

4 Java 5 Generic Collections
% Untyped vs Typed syntax
< For-each loop

What are Collections?

4 Collections are Java objects used to store, retrieve, and
manipulate other Java objects

< Any Java object may be part of a collection, so collection can
contain other collections

4 Collections do not store primitives

¢ Java collection architecture includes:
@ Interfaces - abstract data types representing collections

< Implementation - concrete implementation of collection
interfaces

4 Algorithms - methods for manipulating collection objects

Collection Architecture

¢ Collection framework benefits include:
+ Reusability
4 Uniformity
4 Faster development
< Higher quality
< Interoperability
% Less programming

Collection Arch|tecture

Iterator ;. .P.r.'?d”.‘???ﬁ Colection q ______ Produces Map
A gt ?5 o
------------------------- PrOdUCES : Ak_js_vfit[:ﬂeipj ;

i ListIterator -q : List ;i Set .
':::':-_":: _______ ‘474& SortedMap
| AbstractCoIIchon 1| ; S ------- ren B Y
———p————— - : orte et

_[?.% ﬂf? R N— |

——: ————— ———'*"——— TreeMap
| Abstractl_lst | | AbstractSet | | HashMap

o L? L & IdentityHashiMap

| | LinkedHashMap
HashSet | | TreeSet Hashtable
ﬁ} WeakHashmap | | (Legacy)
LinkedHashSet Com p arabled—l-n - Compara tor |
J Utiliies
(tf:gc;g;) Arraylist | | | AbstractSequentialList | Collecti ons
43 q-\ Arrays
Ml LinkedList

Nterfaces

Iterator Collection

f

Set List

Collection “uses” Iterator

Map “uses” Collection

Set extends Collection (subtyping)
List extends Collection (subtyping)

Interfaces

© Collections Architecture
© Definition
<« Architecture

< Interfaces
4 Collection
4 List
4 Set
< Map
< lterator

4 Implementations
< Arraylist
4 HashMap
% HashSet

4 Java 5 Generic Collections
4 Untyped vs Typed syntax
% For-each loop

Collection Interface

¢ Collection represents a group of objects
< These collection objects are known as collection elements

% There is no direct implementation of this interface in JDK
4 Concrete implementations are provided for subtypes
4 Collections in general can allow duplicate elements, and
can be ordered

4 Unordered collections that allow duplicate elements should
implement directly Collection interface

Adding Elements

% In general two methods are defined for adding elements to

the collection:

interface Collection
{
// ..
/**
* Adds element to the receiver.
* Returns true 1f operation 1s successful,
*/
boolean add (Object element);

/**

otherwise return s false.

* Adds each element from collection ¢ to the receiver.

* Returns true 1f operation 1s successful,
*/
boolean addAll (Collection c);
}

otherwise returns false.

Removing Elements

< Similarly to adding protocol, there are two methods are
defined for removing elements from the collection:

interface Collection

{
// ...
/**
* Removes element from the receiver.
* Returns true if operation is successful, otherwise returns false.
*/

boolean remove (Object element);

/**
* Removes each element contained in collection ¢ from the receiver.
* Returns true if operation is successful, otherwise returns false.
)

boolean removeZAll (Collection c);

}

Other Collection Methods

© |ncludes methods for:

% Checking how many elements are in the collection
% Checking if an element is in the collection
< Iterating through collection

boolean contains (Object element)
boolean containsAll (Collection c¢);
int size();

boolean i1sEmpty () ;

void clear ()

boolean retainAll (Collection c);
Iterator iterator;

lterator Interface

% Defines a protocol for iterating through a collection:

public interface Iterator

{
/**
* Returns whether or not the underlying collection has next
* element for iterating.

*/

boolean hasNext () ;

/**
* Returns next element from the underlying collection.
*/

Object next();

/**

* Removes from the underlying collection the last element returned by next.
*/

volid remove () ;

Set Interface

4 Set is a collection that does not contain duplicate elements

< This is supported by additional behavior in constructors and add(),
hashCode(), and equals() methods

© All constructors in a set must create a set that does not contain
duplicate elements

4 It is not permitted for a set to contain itself as an element

< If set element changes, and that affects equals
comparisons, the lbbehavior of a set is not specified

List Interface

¢ List represents an ordered collection
4 Also known as sequence

4 Lists may contain duplicate elements

4 Lists extend behavior of collections with operations for:
% Positional Access
% Search
¢ List Iteration
% Range-view

Map Interface

4 Map is an object that maps keys to values
4 Keys must be unique, i.e. map cannot contain duplicate keys
< Each key in the map can map to most one value, i.e. one key
cannot have multiple values
4 Map interface defines protocols for manipulating keys and
values

Colections

© Collections Architecture
© Definition
<« Architecture

< Interfaces
4 Collection
4 List
4 Set
< Map
< lterator

4 Implementations
< Arraylist
4 HashMap
< HashSet

4 Java 5 Generic Collections
4 Untyped vs Typed syntax
% For-each loop

Most Commonly Used Collections

Iterator

<<Implements>> T
© Three of the most

commonly used
collections:

< HashSet

< ArrayList

© HashMap

Collection

f

Map

Set

List

T

<<Implements>>

|

HashSet

ArrayL.ist

<<Implements>>

HashMap

ArrayList

4 Represents resizable-array implementation of the List
Interface
% Permits all elements including null

% It is generally the best performing List interface
Implementation

4 Instances of this class have a capacity

< |t is size of the array used to store the elements in the list, and it’s
always at least as large as the list size

% It grows as elements are added to the list

ArrayList Examples

//declare list
ArraylList list = new ArrayList();

//add elements to the list
list.add ("First element");
list.add ("Second element");

//get the list size
int listSize = list.size();

//orint the list size and the first element
= Console

System.out.println(listSize);
System.out.println(list.get (0)); [:j> 2
First element

//add first element in the list
list.add (0, "Added element");

//get the list iterator

Iterator iterator = list.iterator();

while (iterator.hasNext ()) Console

{ Added element
String element = (String)iterator.next(); [:j> First element
System.out.println (element) ; Second element

}

HashMap

4 Collection that contains pair of objects
4 Values are stored at keys

4 |t is a hash table based implementation of the Map interface
% Permits null values and null keys
% The order of the map is not guaranteed

4 Two parameters affect performance of a hash map:
< Initial capacity, indicates capacity at the map creation time

% Load factor, indicates how full the map should be before increasing its
size
©0.75 is the default

HashMap Example

//create a number dictionary

HashMap numberDictionary = new HashMap() ;
numberDictionary.put ("1", "One");
numberDictionary.put ("2", "Two");
numberDictionary.put ("3", "Three");
numberDictionary.put ("4", "Four");
numberDictionary.put ("5", "Five");

//get an iterator of all the keys
ITterator keys = numberDictionary.keySet () .iterator();
while (keys.hasNext ())

{

String key = (String)keys.next();
String value = (String)numberDictionary.get (key);
System.out.println ("Number: " + key + ", word: " + wvalue);
}
-
4 5
Number: 5, word: Five Console
Number: 4, word: Four
Number: 3, word: Three
Number: 2, word: Two
Number: 1, word: One

HashSet

4 Concrete implementation of the Set interface
4 Backed up by an instance of HashMap
% Order is not guaranteed
4 Performance of the set is affected by size of the set and
capacity of the map

4 It is important not to set the initial capacity too high, or the load
factor too low if performance of iteration is important

4 Elements in the set cannot be duplicated

HashSet Example

//create new set
HashSet set = new HashSet ()

//add elements to the set
set.add ("One") ;

set.add ("Two") ;

set.add ("Three") ;

//elements cannot be duplicated in the set
set.add ("One") ;

//print the set Console

System.out.println(set); : [One, Three, Two]

Collections

© Collections Architecture
© Definition
<« Architecture

< Interfaces
4 Collection
4 List
4 Set
< Map
< |terator

4 Implementations
< Arraylist
4 HashMap
< HashSet

4 Java 5 Generic Collections
4 Untyped vs Typed syntax
< For-each loop

Java 5 Generic Collection

¢ Collections use polymorphism to store objects of any type.
< A drawback is type loss on retrieval.

- HaShMap stores HashMap numberDictionary = new HashMap () ;

keY/Value palrS numberDictionary.put ("1", "One");
as Java ObJeCtS, numberDictionary.put ("2", "Two");

& get() methOd Object value = numberDictionary.get ("1”);
returns a String strValue = (S/tring) value;
matching Object

for the given key.

% The key/values in this code arg’actually Strings

% The return value must be type cast back to a String in order
to accurately recover the stored object.

Untyped = Unsafe

¢ Type casting is undesirable (due to possibility of run time
errors).

4 Therefore, use of untyped (pre-Java 5) collections is
considered ‘unsafe’.

< Typed collections avoid type loss.
4 Runtime checks are simplified because the type is known.

Revised syntax

4 The type of object to be stored is indicated on declaration:
private ArrayList<String> notes;

% ... and on creation:
notes =
new ArrayList<String>();

¢ Collection types are parameterized.

Using a typed collection

ArrayList list = new ArrayList();

list.add("First element") ;
list.add("Second element") ; untyped / unsafe

String first = (String)list.get(0);
String second = (String)list.get(1);

ArrayList<String> list = new ArrayList<String>()

list.add("First element");
list.add("Second element") ;

String first = list.get(0); typed / safe
String second = list.get(l);

Using a Typed lteration

ArrayList list = new ArrayList();

Iterator iterator = list.iterator();
while (iterator.hasNext () untyped / unsafe
{

String element = (String)iterator.next():;

System.out.println (element) ;

while (iterator.hasNext())

{

String element = iterator.next();
System.out.println (element) ;

Iterator<String> iterator = list.iterator();

ArrayList<String> list = new ArrayList<String>() ;

typed / safe

Typed HashMaps

¢ HashMaps operate with (key,value) pairs.
< A typed HashMap required two type parameters:

private HashMap<String, String> responses;

responses = new HashMap<String, String> (),

HashMaps

HashMap numberDictionary = new HashMap() ;

numberDictionary.put("1", "One");
numberDictionary.put("2", "Two"); untyped / unsafe

Object value = numberDictionary.get(“1”);
String strValue = (String) value;

HashMap<String,String> numberDictionary =
new HashMap<String,String>() ;

numberDictionary.put("1l", "One");

numberDictionary.put("2", "Two") ;
typed / safe

String value = numberDictionary.get (%“1”);

For-each Loop

4 |teration over collections is a common operation.

< If a collections provides an Iterator, Enhanced for loop
simplifies code

ArrayList<String> list = new ArrayList<String>();
/..

Iterator <String> iterator =
while (iterator.hasNext())

{

list.iterator () ;

. . Standard while loop
String element = iterator.next();
System.out.println (element) ;

}

ArrayList<String> list = new ArrayList<String>();
//..

for (String element : list)
{

System.out.println(element) ;

}

For-each loop

—Review

© Collections Architecture
© Definition
<« Architecture

< Interfaces
4 Collection
4 List
4 Set
< Map
< |terator

4 Implementations
< Arraylist
4 HashMap
% HashSet

4 Java 5 Generic Collections
4 Untyped vs Typed syntax
% For-each loop

OIS

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

Waterford Institute of Technology 0 elLearning

Ir;l.}..‘ 5 WNSTITUID TE CNEOLAIOCHTA PHORT LARGE su ppOr[u HIL

e

