
Produced
by

Algorithms

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Introduction to Test Driven Development

Test Driven Development Introduction

“Good programmers write code, great programmers write tests”

• Context & Motivation

• What it is Unit Testing?

“Never, in the field of programming, have so many owed so much to so few”

- Martin Fowler on the developers behind JUint

3

Waterfall development approach

Waterfall development approach

Waterfall - Working Features

Waterfall - Cost of change

Iterative/Evolutionary approach

Iterative/Evolutionary - Working Features

Things have changed a little…

• Computing power has increased astronomically

• New tools have dramatically eased mundane developer tasks:

• Automated test tools.

• System build tools.

• Version control.

• Continuous integration.

• Used properly, OO languages can make software much easier to change.

• The cost curve is significantly flattened, i.e. costs don’t increase dramatically
with time.

• Up front modeling becomes a liability – some speculative work will certainly
be wrong, especially in a business environment

Test-driven development.

12

Principles of TDD.

• Lots of small changes.

– Use test-driven to get from A to B in very small verifiable steps

– You often end up in a better place.

• Do the Simplest Thing

– Assume simplicity.

• Consider the simplest thing that could possibly work

• Iterate to the needed solution.

– When coding:

• Build the simplest possible code that will pass the tests

• Refactor the code to have the simplest design possible.

• Eliminate duplication.

Test driven development - General

• An iterative technique to develop software.

• Tests are written before the code itself.

• As much (or more) about design as testing.

• Encourages design from user’s point of view.

• Encourages testing classes/units in isolation – Unit testing.

• A test framework is used so that automated testing can be done after every
small change to the code.

• This may be as often as every 5 or 10 minutes.

• Axiom:

• ‘Code that isn’t tested doesn’t work’

• ‘Code that isn’t regression tested suffers from code rot (breaks eventually)’

Test driven development – General (Contd.)

• As much (or more) about documentation as testing.

• The tests are the documentation of what the code does.

• Must be learned and practiced.

• Consequences:

• Fewer bugs;	 	 	

• More maintainable code - loosely-coupled, highly-cohesive systems.

• During development, the program always works—it may not do everything
required, but what it does, it does right,

• Break the cycle of more pressure == fewer tests,

Regression testing.

• New code and changes to old code can affect the rest of the code base.

• ‘Affect’ sometimes means ‘break’.

• We need to rerun tests on the old code, to verify it still works – this is
regression testing.

• Regression testing is required for a stable, maintainable code base.

• Unit tests retain their value over time and allows others to prove the software
still works (as tested).

What is Unit Testing?

• A unit test is a piece of code written by a developer that exercises a very
small, specific area of functionality of the code being tested.

• Usually a unit test exercises some particular method in a particular context

• Unit tests are performed to prove that a piece of code does what the
developer thinks it should do.

• The question remains open as to whether that's the right thing to do
according to the customer or end-user:

• that is acceptance testing

17

What does Unit Testing Accomplish ?
• Does the code do what was expected?

• i.e. s the code fulfilling the intent of the developer?

• Does the code do what was expected all the time?

• exceptions get thrown, disks get full, network lines drop, buffers overflow -
is the the code still perform as expected?

• Can the code be depended upon?

• Need to know for certain both its strengths and its limitations.

• Does the test document the developers Intent?

• An important side-effect of unit testing is that it helps communicate the
code's intended use

18

Why Bother with Unit Testing?

• Will make designs better

• Drastically reduce the amount of time spent debugging.

19

How is Unit Testing Carried Out?

• Step 1: Decide how to test the method in question before writing the code
itself

• Step 2: Write the test code itself, either before or concurrently with the
implementation code.

• Step 3: Run the test itself, and probably all the other tests in that part of the
system

• Key Feature of executing tests: need to be able to determine at a glance
whether all tests are succeeding/failing

20

Excuses for note Testing (1)

• It takes too much time to write the tests

• The trade-off is not “test now” versus “test later”

• It's linear work now versus exponential work and complexity trying to fix
and rework at the end.

21

Excuses for note Testing (2)

“It takes too long to run the tests”

• Separate out the longer-running tests from the short ones.

• Only run the long tests once a day, or once every few days as appropriate,
and run the shorter tests constantly.

“It's not developers job to test his/her code”

• Integral part of developer job is to create working code

“But it compiles!”

• Compiler's blessing is a pretty shallow compliment.

22

Except where otherwise noted, this content is
licensed under a Creative Commons Attribution-
NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

