
JUnit 4 Testing
Frank Walsh

Annotations

Intro to Annotations

• Annotations provide data about a program that is not part of
the program itself. They have no direct effect on the
operation of the code they annotate.

• Annotations have a number of uses, among them:
• Information for the compiler — Annotations can be used

by the compiler to detect errors or suppress warnings.
• Compiler-time and deployment-time processing —

Software tools can process annotation information to
generate code, XML files, and so forth.

• Runtime processing — Some annotations are available
to be examined at runtime.

• Annotations can be applied to a program's declarations of
classes, fields, methods, and other program elements

Annotations in Java

• The annotation appears first, often (by
convention) on its own line, and may include
elements with named or unnamed values.

• The annotation must itself be already defined
and explicitly imported if necessary:

• Annotations are defined using a special syntax:

Built in Annotations

• There are three annotation types that are predefined by the language
specification itself:

• @Deprecated— indicates that the marked element is deprecated and should
no longer be used. The compiler generates a warning whenever a program
uses a method, class, or field with the @Deprecated annotation.

• @Override - informs the compiler that the element is meant to override an
element declared in a superclass. It not required to use this annotation when
overriding a method, it helps to prevent errors. If a method marked with
@Override fails to correctly override a method in one of its superclasses, the
compiler generates an error.

• @SuppressWarnings - tells the compiler to suppress specific warnings that it
would otherwise generate

JUnit 4 and Annotations

• JUnit uses annotations
• @Before - run before each test
• @After - run after each test
• @Test - the test itself

• No need to extend TestCase

First Test

Adding Junit to build path

• Make sure you have the JUnit 4 library on your
Java project’s path. In Eclipse. Select the
project in the project view and select Project -
> properties. This will open the properties
window

• Select Java Build Path and select the libraries
tab.

• Select Add Library… button and add JUnit 4
library to the path.

Create New
Test Case
• A Junit 4 test need to import

relevant classes (However, Eclipse
will do this automatically if you
create the test (File->new->Junit
Test Case)

• Typically include a declaration of
the class being tested

JUnit 4 – Just once

• You can declare one method to be
executed just once, when the class is
first loaded

• This is for time consuming setup, such
as connecting to a data source.

• You can also declare one method to
be executed just once after all the
tests have been completed.

Junit – before each test

• You can define one or more methods to be executed before each test
• Typically such methods initialize values, so that each test starts with a

fresh set

Junit - a test (finally)

• A test method is annotated with @Test, takes no parameters, and
returns no result

• Here’s a failing test autogenerated by Eclipse.

Assertions

• Tests use Assertions to check if code is behaving as you expect.
• An assertion is a simple method call that verifies that something is

true.

@Test
public void testSimpleStuff() {

int a=2;
assertTrue(a==2);

}

More Assertions

• Junit provides lots of assertion methods. Try to be as “expressive” as
possible:

• Here’s the same test again using assertEquals(…):

@Test
public void testSimpleStuff() {

int a=2;
assertEquals(a,2);

}

Planning Tests

• Method to test: A static method designed to find the largest number in a list of
numbers.

• The following tests would seem to make sense:
[7, 8, 9] -> 9
[8, 9, 7] -> 9
[9, 7, 8] -> 9
(supplied test data ->expected result)

