
David Drohan,
Frank Walsh

03 – Streams & File I/O

JAVA: An Introduction to Problem Solving & Programming, 6th Ed. By Walter Savitch

ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Objectives

Describe the concept of an I/O stream

Explain the difference between text and
binary files

Save data, including objects, to a file

Read data, including objects, from a file

203 File Input & Output

Overview: Outline

Why Use Files for I/O?

Text Files and Binary Files

The Concept of a Stream

303 File Input & Output

Why Use Files for I/O

Keyboard input, screen output deal with
temporary data

 When program ends, data is gone

Data in a file remains after program ends

 Can be used next time program runs

 Can be used by another program

403 File Input & Output

Text Files and Binary Files

Files treated as sequence of characters called
text files
 Java program source code

 Can be viewed, edited with text editor

All other files are called binary files
 Movie, music files

 Access requires specialized program

503 File Input & Output

Background

 The Java platform includes a number of packages that are concerned
with the movement of data into and out of programs. These packages
differ in the kinds of abstractions they provide for dealing with I/O
(input/output).

 The java.io package defines I/O in terms of streams. Streams are
ordered sequences of data that have a source (input streams) or
destination (output streams). The I/O classes isolate programmers
from the specific details of the underlying operating system, while
enabling access to system resources through files and other means.

 The best way to understand the I/O package is to start with the basic
interfaces and abstract classes.

03 File Input & Output 6

Background

 An I/O Stream represents an input source or an output
destination. A stream can represent many different kinds of
sources and destinations, including disk files, devices, other
programs, remote data sources etc.

 Streams support many different kinds of data, including simple
bytes, primitive data types, localized characters, and objects.
Some streams simply pass on data; others manipulate and
transform the data in useful ways.

 No matter how they work internally, all streams present the
same simple model to programs that use them: A stream is a
sequence of data.

03 File Input & Output 7

The Concept of a Stream

Use of files in general

 Store Java classes, programs

 Store pictures, music, videos

 Can also use files to store program I/O

A stream is a flow of input or output data

 Characters

 Numbers

 Bytes

803 File Input & Output

The Concept of a Stream

Streams are implemented as objects of special
stream classes

 Class Scanner / PrintWriter

 Object System.out

903 File Input & Output

The Concept of a Stream

 A program uses an output stream to write data to a destination, one
item at time:

03 File Input & Output 10

 A program uses an input stream to read data from a source, one
item at time:

Princeton IO classes – Simple Reading
data from a File

In: Princeton provided library for reading file data that absracts
streaming:

Use In as follows:

In fileIn = new In(“mydatafile.txt”);

double[] data = new double[100];

int i = 0;

while (! fileIn.isEmpty()) data[i++] = fileIn.readDouble()

1.This opens a file for reading. Looks for mydatafile.txt in the current
working directory where your program is running.

2.Then reads double after double into the array. Stops when there are no
more values in the file to be read.

03 File Input & Output 11

Princeton IO classes – Simple Reading
data from a File

Reading in a CSV from file using In.
Ex. Reading a list of people from a file

String delims = "[|]";

Scanner scanner = new Scanner(new File("./moviedata_small/users5.dat"));

while (scanner.hasNextLine()) {

String[] data = scanner.nextLine().split(delims);

Person person = new Person(data[0],data[1],data[2]);

persons.add(person);

}

scanner.close();

 scanner.nextLine() reads in next line of file and returns a
String (e.g. “1,Frank, Walsh”)

 Split() method of the String class returns an String array by
splitting the string using the delimeters specified in his case a
comma.

03 File Input & Output 12

1,Frank, Walsh
2, John,Comber
3, Bob, Hoskins

Data.csv

Princeton IO classes – Simple writing
data to a File

Use the Out type to write to files:

Out out = new Out(“myfile.csv”);

for (Person person:persons){

out.println(person);

}

out.close();

EXAMPLE IN CLASS!!!!

03 File Input & Output 13

Assumes toString() method of Person
returns CSV representation of object

Another way: Creating a Text File

Class PrintWriter defines methods needed

to create and write to a text file
 Must import package java.io

To open the file

 Declare stream variable for referencing the stream

 Invoke PrintWriter constructor, pass file

name as argument

 Requires try and catch blocks

1403 File Input & Output

Creating a Text File

File is empty initially

 May now be written to with method println

Data goes initially to memory buffer

 When buffer full, goes to file

Closing file empties buffer, disconnects from
stream

1503 File Input & Output

Creating a Text File

View sample program

class TextFileOutputDemo

Sample
screen
output

1603 File Input & Output

class TextFileOutputDemo

03 File Input & Output 17

Writing out

to the text file

Creating a Text File

When creating a file

 Inform the user of ongoing I/O events, program
should not be "silent"

A file has two names in the program

 File name used by the operating system

 The stream name variable

Opening, writing to file overwrites pre-
existing file in directory

1803 File Input & Output

Appending to a Text File

Opening a file new begins with an empty file

 If already exists, will be overwritten

Some situations require appending data to existing
file

Command could be
outputStream =

new PrintWriter(

new FileOutputstream(fileName, true));

Method println would append data at end

1903 File Input & Output

Reading from a Text File

View sample program

class TextFileInputDemo

Reads text from file, displays on screen

Note

 Statement which opens the file

 Use of Scanner object (not PrintWriter object)

 Boolean statement which reads the file and terminates
reading loop

2003 File Input & Output

Reading from a Text File

Sample
screen
output

2103 File Input & Output

class TextFileInputDemo

03 File Input & Output 22

Reading in from

the text file

03 File Input & Output 23

Working with Binary files
This Section will cover the following :

 Introduce a FileDialog object which allows the user to
specify a File (via a GUI)

 Write bytes to a File and read them back from the File
using FileOutputStream and FileInputStream

 Write values of primitive data types to/from a File using
DataOutputStream and DataInputStream

 Write Objects to/from a File using ObjectOutputStream and
ObjectInputStream

 Write exception-handling routines using the try-catch block

The Class File

Class provides a way to represent file names in a
general way

 A File object represents the name of a file

The object (myFile) in the statement
File myFile = new File ("sample.dat");

is not simply a string

 It is an object that knows it is supposed to name a file

2403 File Input & Output

03 File Input & Output 25

The Class File

Suppose we want to read the contents of the file
“sample.dat”.

 1st we must create a File object
(from the java.io package)

 2nd we must associate the File object with the file itself

This is achieved as follows :
File myFile = new File ("sample.dat");

Note : This assumes the file sample.dat is stored in
the current directory.

Using Path Names

Files opened in our examples assumed to be
in same folder as where program run

Possible to specify path names

 Full path name

 Relative path name

Be aware of differences of pathname styles in
different operating systems

2603 File Input & Output

03 File Input & Output 27

The Class File

The argument to the constructor (“sample.dat”) , specifies
the file to access.

To open a file that is stored in a directory other than the
current directory you must also specify a path name.

 File myFile = new File("C:\\docs", "sample.dat");

As a rule, you should also check to see if a File object has
correctly been associated with an existing file, by calling
its exists method.
 if(myFile.exists())

{ … }

 If a vaild association is established, we say the file is
opened, and we can now proceed with I/O.

N.B.

03 File Input & Output 28

Some commonly used File methods.

Method Description

boolean canRead() Returns true if a file is readable; false otherwise.

boolean canWrite() Returns true if a file is writable; false otherwise.

boolean exists() Returns true if the name specified as the argument to the File

constructor is a file or directory in the specified path; false

otherwise.

boolean isFile() Returns true if the name specified as the argument to the File

constructor is a file; false otherwise.

boolean

isDirectory()
Returns true if the name specified as the argument to the File

constructor is a directory; false otherwise.

boolean

isAbsolute()
Returns true if the arguments specified to the File constructor

indicate an absolute path to a file or directory; false otherwise.

String

getAbsolutePath()
Returns a String with the absolute path of the file or directory.

String getName() Returns a String with the name of the file or directory.

String getPath() Returns a String with the path of the file or directory.

String getParent() Returns a String with the parent directory of the file or

directory—that is, the directory in which the file or directory can be

found.

long length() Returns the length of the file in bytes. If the File object represents

a directory, 0 is returned.

long

lastModified()

Returns a platform-dependent representation of the time at which the

file or directory was last modified. The value returned is only useful

for comparison with other values returned by this method.

String[] list() Returns an array of Strings representing the contents of a

directory.

03 File Input & Output 29

The Class FileDialog

We can let the user select a file or a directory, via a GUI,
using a FileDialog object.

The object has 2 modes :

 LOAD : to read data from the specified file

 SAVE : to write data to the specified/selected file

The Following code is used to display the Dialog Box below
(on the next slide) for Opening a File

FileDialog dialog;

Frame frame= new Frame("My Frame"); //required to hold the dialog

dialog = new FileDialog(frame,"Open File",FileDialog.LOAD);

dialog.setDirectory("C:\\env");

dialog.setFile("*.dat");

dialog.setVisible (true);

03 File Input & Output 30

The Class FileDialog
 The “Open File” Dialog Box:

 The user can then select a file from the list of files.

Open Option

File Name set

Directory set

Title

03 File Input & Output 31

The Class FileDialog

To retrieve the name of the file the user has selected, we
use the getFile() method.

String fileName = dialog.getFile();

 If the user has selected ‘Cancel’ the method returns a null
string.

Once we have a filename we can create a new File object.

File myFile = new File(fileName); // Current Directory

or
File myFile = new File(dialog.getDirectory(), fileName);

To select a file for saving data, we open the FileDialog in
SAVE mode:

dialog.setTitle(“File Save As...”);

dialog.setMode(FileDialog.SAVE);

dialog.setVisible (true);

03 File Input & Output 32

The Class FileDialog
 The “File Save As…” Dialog Box:

 The user can then save the file in the current directory.

Save Option

File Name set

Directory set

Title

03 File Input & Output 33

Low-Level File I/O (1) – Byte Streams
 Programs use byte streams to perform input and output of 8-bit bytes.

All byte stream classes are descended from InputStream and
OutputStream.

 Once a file is opened (associated properly with a File object), the
actual file access can commence.

 In order to read/write from/to a file, we must create one of the Java
stream objects and attach it to a file.

 There are many byte stream classes available to us. To demonstrate
how byte streams work, we'll focus on the file I/O byte streams,
FileInputStream and FileOutputStream.
 Other kinds of byte streams are used in much the same way; they differ mainly in the

way they are constructed.

 To actually read the data from a file, we attach one of the Java Input
Stream objects to the file (ditto for writing)

03 File Input & Output 34

Low-Level File I/O (2)
 As already mentioned, the two objects that provide low-level (byte)

file access are:

 FileOutputStream

 FileInputStream

 With these objects, we can only input/output a sequences of bytes
i.e. values of data type byte (we will look at writing other data types
and even objects later on)

 To write information to a file we can do the following:

 First, create our File object
 File myFile = new File(“sample.dat”); // or use FileDialog

 Second, associate a new FileOutputStream object to a File
 FileOutputStream fos = new FileOutputStream(myFile);

 Now we are ready for output

03 File Input & Output 35

Low-Level File I/O (3)
 Consider the following byte array:

byte byteArray[] = {10,20,30,40,50,60};

 We can write out the whole array at once as follows:

fos.write(byteArray);

 Or elements Individually:

fos.write(byteArray[0]);

 Once the values have been written to the memory buffer, we
must close the stream, to actually write the data to the file:

fos.close();

 If a stream is not closed, what are the implications?

03 File Input & Output 36

Low-Level File I/O (4)
 To read data into a program, we reverse the steps in the output

routine:

 First, create our File object (if one doesn’t already exist)
 File myFile = new File(“sample.dat”);

 Second, associate a new FileInputStream object to a File
 FileInputStream fis = new FileInputStream(myFile);

 Before we can read in the data, we must first declare and create a
byteArray:

int filesize = (int) myFile.length()

byte byteArray[] = new byte[filesize];

 We use the length() method of the File class to determine the size
of the file (the number of bytes in the file).

 We can then read in the data as follows:

fis.read(byteArray);

03 File Input & Output 37

Mid-Level File I/O (1) – Data Streams
 Data streams support binary I/O of primitive data type values (boolean,

char, byte, short, int, long, float, and double) as well as String values.

 All data streams implement either the DataInput interface or the
DataOutput interface.

 This section focuses on the most widely-used implementations of these
interfaces, DataInputStream and DataOutputStream.

 The Following code creates a DataOutputStream object:

File myFile = new File(“Sample1.dat”);

FileOutputStream fos = new FileOutputStream(myFile);

DataOutputStream dos = new DataOutputStream(fos);

 N.B. - Since a DataOutputStream can only be created as a wrapper for
an existing byte stream object, the argument to the DataOutputStream
constructor is a FileOutputStream object. A DataOutputStream object
does not get connected to a file directly – it’s connected via a
FileOutputStream object (ditto for reading…)

03 File Input & Output 38

Mid-Level File I/O (2)
 The DataOutputStream object has a number of methods for

writing the primitive data types:

dos.writeInt(12345689);

dos.writeDouble(12345689.99);

dos.writeChar(‘A’);

dos.writeBoolean(true);

 Don’t forget to close the stream

dos.close();

03 File Input & Output 39

Mid-Level File I/O (3)
 To read the data back from the file, we reverse the operation:

File myFile = new File(“sample.dat”);

FileInputStream fis = new FileInputStream(myFile);

DataInputStream dis = new DataInputStream(fis);

…..

int X = dis.readInt();

Double D = dis.readDouble();

char Y = dis.readChar();

Boolean B = dis.readBoolean();

……

dis.close();

 Note : the order of write & read operations must match – Why?

03 File Input & Output 40

File I/O : Exceptions (1)
 Exceptions are usually handled by catching a thrown exception and

providing exception-handling code to process the thrown exception.

 There are two approaches to handling thrown exceptions:

 Add a throw clause to the method header or

 Use a try/catch block in your code

 For simple programs, the first approach may be acceptable, but in
general you should use the second approach, in which you write a
response code to handle a thrown exception.

03 File Input & Output 41

File I/O : Exceptions (2)

Take the following example :

class FindSum

{

private int result;

private boolean success;

public int GetSum()

{ return result; }

public boolean isSuccess()

{ return success; }

03 File Input & Output 42

File I/O : Exceptions (3)
void computeSum(String Filename)

{

success = true;

try {

File myFile = new File(FileName);

FileInputStream fis = new FileInputStream(myFile);

DataInputStream dis = new DataInputStream(fis);

int i = dis.readInt();

int j = dis.readInt();

int k = dis.readInt();

result = i + j + k;

dis.close();

} // end of try block

catch(IOException e)

{ success = false; }

} // end of method computeSum

} // end of class FindSum

03 File Input & Output 43

File I/O : Exceptions (4)
// In a Program

FindSum obj = new FindSum();

obj.computeSum(“samplint.dat”);

if(obj.isSuccess())

{

int total = obj.getSum();

// Output total

}

else

{

// Output some File I/O Error Message

}

03 File Input & Output 44

File I/O : Exceptions (5)
 If an exception is thrown (i.e. an error occurs) during the

execution of the try block, then the catch block is executed and
the variable success is set to false.

 On a call to the method isSuccess() , a false value is returned
and an error message is displayed.

 We can modify the catch block to output an error message itself,
as well as setting the success variable:
try {…}

catch (IOException e)

{

success = false;

JOptionPane.showMessageDialog(null,e.toString(),”Error

Message”,JOptionPane.ERROR_MESSAGE);

}

03 File Input & Output 45

File I/O : Exceptions (6)
There are a number of useful exception classes

available, when working with files :

 You can throw a FileNotFoundException if you’re trying to
open a file that does not exist.

 You can throw a EOFException if you’re trying to read
beyond the end of a file

 If you want to include statements that will catch any
type of exception you can use the following:

catch(Exception e)

{

…

}

High-Level File I/O - Object Streams
Binary-File I/O with Objects of a Class

Storing Array Objects in Binary Files

4603 File Input & Output

High-Level File I/O
Consider the need to write/read objects other

than Strings

 Possible to write the individual instance variable values

 Then reconstruct the object when file is read

A better way is provided by Java

 Object serialization – represent an object as a
sequence of bytes to be written/read

 Possible for any class implementing

Serializable

4703 File Input & Output

03 File Input & Output 48

High-Level File I/O – Case Study
We will take a Person Object as an example to

illustrate.

We assume a Person Object consists of :
 A Name (String)

 An Age (int)

 A Gender (char), (‘M’ or ‘F’)

High-Level File I/O – Case Study

Interface Serializable is an empty interface

 No need to implement additional methods

 Tells Java to make the class serializable (class objects
convertible to sequence of bytes)

E.G - class Person

import java.io.*; // we need this for class Serializable

class Person implements Serializable

{

// All the declarations / methods

}

4903 File Input & Output

High-Level File I/O – Case Study

Once we have a class that is specified as
Serializable we can write objects to a

binary file

 Use method writeObject

Read objects with method readObject();

 Also required to use typecast of the object

5003 File Input & Output

03 File Input & Output 51

High-Level File I/O – Case Study
 To write a Person object to a file, we first create an ObjectOutputStream

object:
File myFile = new File(“objects.dat”);

FileOutputStream fos = new FileOutputStream(myFile);

ObjectOutputStream oos = new ObjectOutputStream(fos);

 To save a Person object, we write :
Person p = new Person(“Joe Bloggs”, 25, ‘M’);

oos.writeObject(p);

 Note : You can save different types of objects to the same file using the
writeObject() method.

03 File Input & Output 52

High-Level File I/O – Case Study
 To read a Person object from a file, we first create an

ObjectInputStream object:

File myFile = new File(“objects.dat”);

FileInputStream fis = new FileInputStream(myFile);

ObjectInputStream ois = new ObjectInputStream(fis);

 Then, to read a single Person object from the file, we write :

Person p = (Person) OIStream.readObject();

 Note : If you save different types of objects to the same file
using the writeObject() method you must ensure that the
objects are read back in the correct order, using readObject()

Array Objects in Binary Files

Since an array is an object itself, it is possible

to use writeObject with an entire array

 Similarly use readObject to read entire

array

E.G. - class PersonIODemo (later slides)

5303 File Input & Output

03 File Input & Output 54

High-Level File I/O – Case Study
Consider the following array of Person objects where N

represents some integer value.
Person group[] = new Person[N];

Assuming that all N Person objects are in the Array, we
can store them to a file a follows:

//Save the size of the array first

oos.writeInt(group.length);

//Save Person Objects next

for(int i = 0; i< group.length; i++)

oos.writeObject(group[i]);

We store the size of the array first, so we know how
many Person objects to read back.

03 File Input & Output 55

High-Level File I/O – Case Study
int N = OIStream.readInt();

for(int i = 0; i< N ; i++)

group[i] = (Person) ois.readObject();

However, since an array itself is an object, we can
actually store the whole array at once :

oos.writeObject(Group);

And read the whole array back at once :

group = (Person[])ois.readObject();

Note the type casting of an array of Person objects

03 File Input & Output 56

Case Study : PersonIODemo

Output on 1st Run

Output on 2nd Run

03 File Input & Output 57

Case Study : PersonIODemo

03 File Input & Output 58

Case Study : PersonIODemo

Summary

Files with characters are text files

 Other files are binary files

Programs can use PrintWriter and

Scanner for I/O

Always check for end of file

File name can be literal string or variable of type

String

Class File gives additional capabilities to deal

with file names

5903 File Input & Output

Summary

Use ObjectOutputStream and

ObjectInputStream classes enable writing

to, reading from binary files

Use writeObject to write class objects to

binary file

Use readObject with type cast to read objects

from binary file

Classes for binary I/O must be Serializable

6003 File Input & Output

61

Questions?

03 File Input & Output

