
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

Algorithms

Exceptions

Eamonn de Leastar

edeleastar@wit.ie

mailto:edeleastar@wit.ie

2

Exceptions

± Definition
± Exception types
± Exception Hierarchy
± Catching exceptions
± Throwing exceptions
± Defining exceptions
± Common exceptions and errors

Motivation

Exceptions provide the means to
separate the details of what to do when
something out of the ordinary happens
from the main logic of a program

• What happens if the file can't be opened?
• What happens if the length of the file

can't be determined?
• What happens if enough memory can't

be allocated?
• What happens if the read fails?
• What happens if the file can't be closed?

3

readFile
{
 open the file;
 determine its size;
 allocate that much memory;
 read the file into memory;
 close the file;
}

Motivation (2)

4

errorCodeType readFile {
 initialize errorCode = 0;

 open the file;
 if (theFileIsOpen) {
 determine the length of the file;
 if (gotTheFileLength) {
 allocate that much memory;
 if (gotEnoughMemory) {
 read the file into memory;
 if (readFailed) {
 errorCode = -1;
 }
 } else {
 errorCode = -2;
 }
 } else {
 errorCode = -3;
 }
 close the file;
 if (theFileDidntClose && errorCode == 0) {
 errorCode = -4;
 } else {
 errorCode = errorCode and -4;
 }
 } else {
 errorCode = -5;
 }
 return errorCode;
}

Motivation (3)

5

readFile {
 try {
 open the file;
 determine its size;
 allocate that much memory;
 read the file into memory;
 close the file;
 } catch (fileOpenFailed) {
 doSomething;
 } catch (sizeDeterminationFailed) {
 doSomething;
 } catch (memoryAllocationFailed) {
 doSomething;
 } catch (readFailed) {
 doSomething;
 } catch (fileCloseFailed) {
 doSomething;
 }
}

3

What is Exception?

± Exceptions are unexpected conditions in a program
± Exceptions happen at the different levels in a program

± They are usually handled at the different levels:
±Where they occur
±At another level

± Exception examples:
± Opening file that does not exist
± Incorrect format found in an input stream
± Network error during communication activity

Throwing/Forwarding/Catching

7

The Catch or Specify Requirement
• Valid Java programming language code must honor the Catch or

Specify Requirement.
• This means that code that might throw certain exceptions must be

enclosed by either of the following:
• A try statement that catches the exception. The try must

provide a handler for the exception, as described in Catching
and Handling Exceptions.

• A method that specifies that it can throw the exception. The
method must provide a throws clause that lists the exception,
as described in Specifying the Exceptions Thrown by a
Method.

• Code that fails to honor the Catch or Specify Requirement will not
compile.

• Not all exceptions are subject to the Catch or Specify Requirement.
8

http://java.sun.com/docs/books/tutorial/essential/exceptions/handling.html
http://java.sun.com/docs/books/tutorial/essential/exceptions/declaring.html

4

Three Kinds of Exception in Java
1. Checked Exception: Exceptional conditions that a well-written

application should anticipate and recover from
e.g. attempt to open non-existent file
Checked exceptions are subject to the Catch or Specify
Requirement

2. Errors: Exceptional conditions that are external to the application,
and that the application usually cannot anticipate or recover from

e.g. hardware malfunction
Errors are not subject to the Catch or Specify Requirement

3. Runtime Exceptions: These are exceptional conditions that are
internal to the application, and that the application usually cannot
anticipate or recover from
 e.g. API misuse (supply null in place of file name)

Errors are not subject to the Catch or Specify Requirement

5

Exception Hierarchy…

Throwable

Exception Error

RuntimeException
Unchecked

Checked

6

…Exception Hierarchy

± Throwable – top of the exception hierarchy in Java, all
exceptions are of this type

± Error – represents serious problems in program, that
usually cannot be covered from;

± Exception – superclass for all exceptions including user-
defined exceptions. Users extend from this class
exceptions that can be recovered from

± RuntimeException – Generally caused by illegal
operations, bad API usage etc... These exceptions
indicate serious bug that cannot be recovered from and
should be eliminated from application

8

Handling Exceptions in Java

± There are two different mechanisms for handling Java
exceptions:
± Handling exceptions in a method where they are caught
± Propagating exceptions to the calling method

±Calling method handles the exceptions

± Which way you will handle exceptions depend on the
overall design of the system

9

try-catch block
± Exceptions are handled in a try-catch block

± Checked exceptions can be wrapped in a try-catch block unless they
are propagated to a calling method

± Exceptions in a catch block can be any exception of Throwable type

public void myMethod()
{
 try
 {
 //code that throws exception e
 }
 catch (Exception e)
 {
 //code that handles exception e
 }
}

10

Catching Multiple Exceptions
± It is possible to catch multiple exceptions in a catch block
± Order of exceptions is important as more generic

exceptions should be handled at the end

public void myMethod()
{
 try
 {
 //code that throws exception e1
 //code that throws exception e2
 }
 catch(MyException e1)
 {
 //code that handles exception e1
 }
 catch(Exception e2)
 {
 //code that handles exception e2
 }
}

Exception

MyException

11

finally block
± Executes always at the end after the last catch block
± Commonly used for cleaning up resources (closing files,

streams, etc.)
public void myMethod()
{
 try
 {
 //code that throws exception e1
 //code that throws exception e2
 }
 catch (MyException e1)
 {
 //code that handles exception e1
 }
 catch (Exception e2)
 {
 //code that handles exception e2
 }
 finally
 {
 //clean up code, close resources
 }
}

12

Propagating Exceptions

± Can be used instead of try-catch block
± Let the calling method handle the exception

± Need to declare that method (in which code is defined)
throws the exception
± Keyword throws is used in method declaration

public void myMethod() throws Exception
{
 //code that throws exception e
}

13

Handling Generic Exceptions

± If you catch generic exception that will catch all the
exceptions of that particular type

± For example, catching Throwable will handle checked and
unchecked exceptions

public void myMethod()
{
 try
 {
 //code
 }
 catch (Throwable e)
 {
 System.out.println(e.printStackTrace());
 }
}

14

Creating new Exceptions

± It is possible to create new exception types specific to the
application

± These must be subclasses of Exception class
± For example, exception hierarchy for the insurance

application could be:

Exception

InsuranceException

PolicyCreationException LowPremiumException

15

Throwing Exceptions

public class PolicyFactory
{
 public Policy createPolicy(Policyable aPolicyable)

 throws PolicyCreationException
 {
 if (aPolicyable.doesMatchInsuranceCriteria())
 {
 return aPolicyable.createPolicy();
 }
 else
 {
 throw new PolicyCreationException();
 }
}

± To throw new exception:
± Use keyword throw
± Create a new instance of exception

16

Some Common Java Exceptions

± Unchecked, subclass of RuntimeException:
± NullPointerException

±Thrown if a message is sent to null object
± ArrayIndexOutOfBoundsException

±Thrown if an array is accessed by illegal index
± Checked:

± IOException
±Generic class for exceptions produced by input/output operations

± NoSuchMethodException
±Thrown when a method cannot be found

± ClassNotFoundException
±Thrown when application tries to load class but definition cannot be

found

17

Some Common Java Errors

± NoSuchMethodError
± Application calls method that no longer exist in the class definition

±Usually happens if class definition changes runtime

± NoClassDefFoundError
± JVM tries to load class and class cannot be found

±Usually happens if classpath is not set, or class somehow gets
removed from the classpath

± ClassFormatError
± JVM tries to load class from file that is incorrect

±Usually happens if class file is corrupted, or if it isn’t class file

Checked Vs Unchecked?

• Because Java does not require methods to catch or to
specify unchecked exceptions programmers may be
tempted to write code that throws only unchecked
exceptions (or make all their exception subclasses inherit
from RuntimeException)

• This allows programmers to write code without bothering
with compiler errors and without bothering to specify or to
catch any exceptions.

• Seems convenient to the programmer, as it sidesteps the
intent of the catch or specify requirement

22

Sun Advice (Java Tutorial)

• Generally speaking, do not throw a RuntimeException or
create a subclass of RuntimeException simply because you
don't want to be bothered with specifying the exceptions
your methods can throw.

• Bottom line guideline: If a client can reasonably be
expected to recover from an exception, make it a checked
exception. If a client cannot do anything to recover from the
exception, make it an unchecked exception.

• For alternative view see:
http://www.mindview.net/Etc/Discussions/CheckedExceptions

23

http://www.mindview.net/Etc/Discussions/CheckedExceptions

Exceptions in IDEs

• IDEs can in adherently promote bad practice in
dealing with Exceptions

24

Silent Fail Problem

• What happens if
an exception
occurs in this
code?

• Who is
monitoring the
stack trace log
file?

25

public void process()
{
 try
 {
 // do something
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
}

public void process() throws Exception
{
 // do something
}

public void process()
{
 // do something
} unchecked

checked

checked

Example: Serialisation

26

 public void read()
 {
 ObjectInputStream is = null;

 XStream xstream = new XStream(new DomDriver());
 is = xstream.createObjectInputStream(new FileReader(file));

 stack = (Stack) is.readObject();

 if (is != null)
 {
 is.close();
 }
 }

Syntax Errors due to Checked
Exceptions

27

Error Message Detail

28

“Helpful” Suggestions

29

“Helpful” Suggestions - multi-catch?

30

“Surround
with try-
catch”
Wrong
Option!

31

Select - ‘Add Throws Exception’

• Which one!

32

Three Exceptions!

• What if exception thrown in readObject()
• -> File remains open and is not released…

33

‘Finally’

• will ensure file is closed before exceptions
propagated 34

 public void read() throws Exception
 {
 ObjectInputStream is = null;

 try
 {
 XStream xstream = new XStream(new DomDriver());
 is = xstream.createObjectInputStream(new FileReader(file));
 stack = (Stack) is.readObject();
 }
 finally
 {
 if (is != null)
 {
 is.close();
 }
 }
 }

Simplest Approach

• Always throw base ‘Exception’
• Never accept ‘surround with try / catch’

suggestion
• Remember to include finally if resources are

opened/retrieved

35

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

