Analysis of Algorithms

Frank Walsh/Eamonn Deleaster

Agenda

e Introduction
o Why analyse algorithms

Observations

Mathematical Models

Growth Classification for algorithms
Theory of Algorithms

Why analyse algorithms

e Programmers need to develop working solutions to problem

e Algorithm analysis helps developers to write programs that:
o provide an optimal working solution
o predict resources and time necessary to execute a program
o give guarantees regarding performance.

e Helps to avoid performance problems

o Clients get poor performance because programmer didn’t understand or investigate
performance characteristics of program.

Scientific Method

Approach that scientists use to understand the natural world

m Observe some feature of the natural world, generally with

precise measurements.

Hypothesis | Predictions

m Hypothesise a model that is consistent with the
observations.

m Predict events using the hypothesis.

m Verify the predictions by making further observations.

i

m Validate by repeating until the hypothesis and Theory
observations agree.

Scientific Method

Key features of the scientific method:

e Experiments must be reproducible
o so that you can convince others.

e Your hypothesis must be falsifiable
o “No amount of experimentation can ever prove me right; a
single experiment can prove me wrong”

e Are these scientific hypothesis?:
o “There is life on other planets”

o “Two objects will hit the ground at the same time when
dropped from the same height(excluding air resisitance)”

states
that a hypothesis can be
considered as a scientific theory
only if it can be disproved.

Observations

e \We can make quantitative measurements
of the running time of our programs.

o Easy compared to other sciences (don’t need to
build a hadron collider)

e Answers a core question: How long will my
program take?
e Initial observation, the problem size:

o The problem size can be the size of input or value
of input)
o Most of the time, programming running time is

insensitive to the input itself, but IS SENSITIVE to
the size of the input.

Observations: Example

ThreeSum: Given N distinct integers, how many triples sum to exactly zero:
public class ThreeSum

{
public static int count(int[] a)

{
int N = a.length;
int count = ©;
for (int i = @; i < N; i++)
for (int j = i+1; j < N; Jj++)
for (int k = j+1; k < N; k++)
if (a[i] + a[j] + a[k] == @)
count++;
return count;

}

public static void main(String[] args)
{
int[] a = In.readInts(args[0]);
System.out.println.println(count(a));
}
¥

Observation: Example

e How do we measure running time
o Manual (e.g. stopwatch)
o Use JUnit(look at running times of methods)
o Automatic (build it into the program). Can use the Stopwatch() class.

public static void main(String[] args)

{

int[] a = In.readInts(args[0]);
Stopwatch stopwatch = new Stopwatch();
System.out.println(ThreeSum.count(a));
double time = stopwatch.elapsedTime();

System.out.println("elapsed time " + time);

}

Observation: Empirical Analysis

Running for different size input (N):

250 0.0
500 0.0
1,000 0.1
2,000 0.8
4,000 6.4
8,000 51.1

16,000 ?

Observation: Data Analysis

e Plot the running time T(N) against input size (N)
e How can we predict values for 16K 5“‘
o get an equation for the trendline in the graph

40

o Equation can be used to calculate how long will my program
take, as a function of the input size.
e One approach:

o use a tool that can “fit” an equation to the trendline. .
o use the equation to predict other values 17

running time T(N)

1K 2K 4K 8K
problem size
i\"

Observation: Data analysis with Spreadsheet

CER-EsNe . Bnle

. Chart data aS X_Y pIOt irk Area ~ | Format Selection ?&l L.. L__ E‘ AI
e |Insert Trendline al 8 | _c | o | e | ¢ [v | s K
200 1] |
e More info here: o o5
b & . .
httD //WWW .CPDP. 8000 511 Running time: threesum
edU/~SeSkandari/dOCUm | a fix)=1.00625552820106E-0104"29991538443
ents/Curve Fitting Willia | ——
m Lee] Ddf = ——— Power (Caolumn C}
e Use equation for |
trendline to predict future | | N
values: | | | '—‘_

e Aproximating egn:
T(N) = 1.006x10 19 N*

http://www.cpp.edu/~seskandari/documents/Curve_Fitting_William_Lee.pdf
http://www.cpp.edu/~seskandari/documents/Curve_Fitting_William_Lee.pdf
http://www.cpp.edu/~seskandari/documents/Curve_Fitting_William_Lee.pdf
http://www.cpp.edu/~seskandari/documents/Curve_Fitting_William_Lee.pdf
http://www.cpp.edu/~seskandari/documents/Curve_Fitting_William_Lee.pdf

Observation: Data Analysis using logs

e Log-log plot: Plot running time T (N) vs. input size N using log-log scale.

e Get straight line with slope of 3: _
o egn. of straight line is y=mx + ¢ 25.5 a—:;f_;:;urx:;_ S
5 i slope 3
o for this graph: Ig(T (N))=blIgN +c

o b=2.99, c=-33.2103 =

e T(N)=aNP, where a=2° using power law = jz
https://en.wikipedia.org/wiki/Power_law =

e Now we can make a Hypothesis for running 8-

time 3 orders

of magnitude

o Running time is approx. 2-332"N?3
T(N)=1.006x10"10 N3
| —

e Same as previous slide... k2K 4K K

https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Power_law

Prediction and Validation

e Hypothesis: Running time is 1.006x10-'° N® where N is the size of the input

e Predictions:
o 51 seconds for N=8000
o 408.1 seconds for N=16000

e (Observations:

Hypothesis validated!

8,000 51.1
8,000 51.0
8,000 51.1

16,000 410.8

What effects the Running Time

e System independent effects:
o Algorithm
o Input Data
o System dependent effects
o hardware: processor, memory
o software: compiler, garbage collection etc.

o System: operating system, network, other apps...

e System independent effects determine the exponent in egn.
e Both System independent and dependent effects determine the constant

e Difficult to get precise measurement but easier to obtain measurements
o no animals were harmed in this experiment!
o Can run large number of experiments.

Mathematical Models for Algorithms

Mathematical Models for Algorithms

e Example: 1-Sum
o How many instructions are performed in the code:

int count = ©;
for (int 1 = 0; i < N; i++)

if (a[i] == @)

count++;

variable declaration 2
assignment statement 2
less than compare N+1
equal to compare N
array access N

increment Nto2 N

Mathematical Models for Algorithms

Example: 2-sum

. .) Pf. [n even]
e How many instructions as a function of

input size

1. int count = ©;
2. for (int 1 = @; i < N; i++)
3. for (int j = i+1; j < N; j++)
4, if (a[i] + a[j] == @)
5. count++; °
e Line 4 is executed (N-1)+(N-2)+(N-3)+... Gotane o Glads N e in
. o 2 2
+2+1+0 times halfof half of

square diagonal

Mathematical Models for Algorithms

Example: 2-sum

vi A W N R

int count = 0;
for (int i = @; i < N;
for (int j = i+1; j
if (a[i] + a[]]

count++;

NEED
T0
SIMPLIFY!!

i++)

< N; j++)

== 0)

variable declaration
assignment statement
less than compare
equal to compare
array access

increment

N+2
N+2
BN+ 1)(N+2)
WNIN-1)
NN-1)

BLN(N-1)toN(N-1)

L5

tedious to count exactly

Mathematical Cost Models: Simplify

“...we shall therefore only attempt to count the number of multiplications and
recordings. " — Alan Turing

e Identify a basic operation
o usually the operation that executes the most number of times
o Can ignore other operations

e In 2-sum, the array accesses in the “if’ statement is a good choice:

int count = ©;

for (int i = @; i < N;/i

i+173 < N3 Jj++)
il == 0)

for (int j
if (a[i]

+

count++;

Mathematical Cost Model: Simplicity

Time efficiency can analysed by determining the
number of repetitions of the basic operation as a

function of /nput size. For big input sizes, N:
T(N) =c, C(N)

Time
umber of times basic ope@
ecuted

Execution time of basic operation

Mathematical Cost Model: Simplify

Use “Tilda Notation”

e Estimate Number of Times Basic Operation is executed and use Higher Order

term:
ti frequenc
e For 2-Sum example:

o Basic Operation runs N(N-1) variable declaration N+2
assignment statement N+2
C(N) = NN ~ N2
less than compare WiN+1)(N+2)
equal to compare L N(N-1)
array access N(N-1) +—— cost model = al

increment WBNIN-DtoNIN-1)

Mathematical Cost Model

3-Sum Example: 3% WolframAlpha
1int N = a.length; | sum(sum(sum(, k=j+1..N),j=i+1.N)i=1.N)
2 int count = 0; E e e D

3 for (int 1 = @; 1 < N; i++)
4 for (int j = i+1l; j < N; Jj++)

5 for (int k = J+1; k < N ke+) i[[]_EN[N;_SN”]
6 if (a[i] + a[j] + a[k] == @) | P Peprel 6
7 count++;

return count;
Basic Operation (line 6: “touches the array 3 times)

Number of times Line 6 executes: N(N-1)(N-2)/6 ~ N®/6 (Can calculate using discrete maths or online tool:
http://www.wolframalpha.com/)
Number of times array accessed C(N) ~ N3/2

What does this tell us about how the algorithm running time grows as you increase size?

T(N) = c,,C(N) = ¢, N%/3

http://www.wolframalpha.com/
http://www.wolframalpha.com/

Mathematical Cost Model: Summary

Develop a Mathematical model using the following steps

m Develop an input model, including a definition of the problem size(e.g. size of
array)

m |dentify the inner loop.
m Define a cost model that includes the “basic operation” in the inner loop.
m Determine the frequency of execution of the basic operation for the given input.

Doing so might require mathematical analysis...

Order of Growth Classification

Common Order of Growth classifications

e If f(N) ~ cg(N) for some constant c>0 then the Order of Growth of f(n) is g(n).

o example Threesum:
C(N) ~ 1/2N? so order of growth is N*

int count = 0;

for (int 1 = @; i < N; i++)
for (int j = i+1; j < N; j++)
for (int k = j+1; k < N; k++)
if (a[i] + a[j] + a[k] == @) count++;

Common order-of-growth classifications

e Most algorithms can be classified using the following functions of their input
size:
1, log N, N, NlogN,N? N3 and 2N

log-log plot

ST

exponential

logarithmic

1= constani

! 1 ! 1 ! T ! 1 ! 1
1K 2K 4K BK o, 512K

Typical orders of growth

Common order-of-growth classifications

order of woilcal eode F K d iDti |
growth name ypical code framewor escription example

add two

1 constant a=>b+ c; statement 1

numbers

while (N > 1) i s 2
i i divide in half binary search =

log N logarithmic { N=N/AZ5 wun 3 y 1
i for (int i = 0; i < N; i++) i find the 5

N near { ... } P maximum

divide
Nlog N linearithmic [see mergesort lecture] mergesort oto)
and conquer
for (int i = 0; i < N; i++)

; : ; : heck all

N2 quadratic for (int j = 0; j < N; j++) double loop ¢ ec‘ a 4
... } pairs
for (int i = 0; 1 < N; i++)
. for (int j = 0; j < N; j++) . check all
3
N cubic for (int k = 0; k < Ni ki+) triple loop triles 8
{ ... }
N) [Bitataris] FillEgtire] exhaustive check all
/ exponential see combinatorial search lecture cearch cubsets W)

Demo - Binary Search

° PrOblem: Given 3 SORTED public static int binarySearch(int[] a, int key)
array and a key, find index of int lo = 0, hi = a.length-1;
the key in the array? while (lo <= hi)
e Solution: Use suitable search {
. . int mid = 1o + (hi - 1lo) / 2;
algorithm, Binary Search if (key < a[mid]) hi = mid - 1:
© Compare key againSt middle else if (key > a[mid]) lo = mid + 1;
o Smaller:- go left else return mid;
o Larger:- go right }
o Equal:- return location return -1;

}

Example - Binary Search Analysis

e What's the basic operation
o 1st key comparison - runs every time

e C(N) is the basic operation count in a sub-array of size <=N
e C(N)is less than or equal to the number of key comparisons to search left or

right half of the array, G(N/2) + 1. C(N)<=C(N/2)+ Apply recurrence to }
e Thisis a recurrence relation. <=C(N,4);%+ 137 st term

<=C(N/8)+1+1+1
C(N) <= C(N/2)+1 for N>1 and C(1)=1 -
<=C(N/N) + 1+ 1+...41 (i.e. <=C(N/2¥) + 1 + X)
= 1+IgN

Assume N is a power of 2: N=2%

e Binary Search is Logarithmic

Example - 2Sum

int count = 9;

e See the 2Sum algorithm,

for (int 1 = 0@; i < N; i++)

determine the number of For (int j = i+l; j < N; j++)
pairs of integers that sum to 1f (ali] + a[3] == @) counts+;
0.

e 2Sum solved in quadratic
time (N?) Arrays.sort(a);

. . int N = a.l th;
e Possible improvement T e

a. sortarray a (MergeSort: NlogN)

int cnt = 9;

for (int 1 = 0@; i < N; i++)

b. for each nimber aJi] search for - if (BinarySearch.rank(-a[i], a) >
ali] (Binary Search: NlogN) i)
e Overall Running time: NLogN cnt+;

return cnt;

Example - 3Sum improvement

Algonthm Arrays.sort(a);
int N = a.length;
1. Sort Array al] int ent = @;
. . for (int 1 = @; i < N; i++)
2. For each pair of numbers a[i] for (int § = 1+1; 5 < N; §44)
and a[j] binary search for -(a[i] if (BinarySearch.rank(-a[i]-a[3], a) > J)
+a[j]) cnt++;

return cnt;

Analysis

1. Sort is N? (Insertion Sort)
2. Binary search is N°LogN

Example: 2Sum and 3Sum Comparisons

Typically, better order of growth means faster running times

array accesses (thousands)

100

\\TwoSum

1 1 1 1 1 1 1
1K 2K 4K
problem size N

TwoSumFast
JI’ 4N1gN
8K

array accesses (millions)

3

N2 N?IgN

~—ThreeSum

\Th reeSumFast

1K 2K 4K 8K
problem size N

Costs of algorithms to solve the 2-sum and 3-sum problems

Algorithm Theory

Analysis Types

e Best Case

o Lower bound on cost

o Determined by “easiest input”.
e Worst Case

o Upper bound on cost

o Provides a worst case guarantee
e Average Case

o Expected cost of random input
o Predictor for performance

Common Notation in Algorithm Theory

aN?
asymptotic 10N2 classi
Big Theta L O(N2) S
order of growth 5N2+22Nlog N+ 3N algorithms
10N
. 100 N develop
Big Oh O(N?) and smaller O(N2) bound
22Nlog N+3N upper bounds
a2 N2
) _ N3 develop
Big Omega O(N2) and larger Q(N?)

N3+22NlogN+3N lower bounds

Theory of Algorithms

Goals.

- Establish "difficulty" of a problem.

- Develop "optimal" algorithms.

Approach.

- Eliminate variability in input model: focus on the worst case.
- Establish Upper bound and Lower bound.

Upper bound is performance guarantee

Lower bound. proof that no algorithm can do better.

In-Class Example

private static int maxValue(char[] chars) {
int max = chars[0];
for (int ktr = 1; ktr < chars.length; ktr++) {
if (chars[ktr] > max) {

max = chars[ktr];

}

return max;

Input Size?
Basic Operation?
Best Case?
Worst Case?
Average Case?

Claccification

In-Class Example

ALGORITHM UnigueElements(A[0..n — 1])

e Input Size? //Determines whether all the elements in a given array are distinct
e Basic Operation? //Input: An array A[0..n — 1]
e Best Case? //Output: Returns “true” if all the elements in A are distinct
I and “false” otherwise
o Worst Case? fori < 0ton —2 do

forj<—i+1ton—1do
if A[i]= A[j] return false
return true

In-Class Example

ALGORITHM Binary(n)
/Input: A positive decimal integer n
/Output: The number of binary digits in n’s binary representation
count <1

Input Size?
Basic Operation?

Best Case? while n > 1 do
Worst Case? count < count + 1
Average Case? n < |n/2]

return count

