Analysis of Algorithms

Frank Walsh/Eamonn Deleaster

Agenda

- Introduction
 - Why analyse algorithms
- Observations
- Mathematical Models
- Growth Classification for algorithms
- Theory of Algorithms

Why analyse algorithms

- Programmers need to develop working solutions to problem
- Algorithm analysis helps developers to write programs that:
 - provide an optimal working solution
 - predict resources and time necessary to execute a program
 - give guarantees regarding performance.
- Helps to avoid performance problems
 - Clients get poor performance because programmer didn't understand or investigate performance characteristics of program.

Scientific Method

Approach that scientists use to understand the natural world

Observe some feature of the natural world, generally with precise measurements.

- Hypothesise a model that is consistent with the observations.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate by repeating until the hypothesis and observations agree.

Scientific Method

Key features of the scientific method:

- Experiments must be reproducible
 - so that you can convince others.
- Your hypothesis must be falsifiable
 - "No amount of experimentation can ever prove me right; a single experiment can prove me wrong"
- Are these scientific hypothesis?:
 - "There is life on other planets"
 - "Two objects will hit the ground at the same time when dropped from the same height(excluding air resisitance)"

Observations

- We can make quantitative measurements of the running time of our programs.
 - Easy compared to other sciences (don't need to build a hadron collider)
- Answers a core question: How long will my program take?
- Initial observation, the problem size:
 - The problem size can be the size of input or value of input)
 - Most of the time, programming running time is insensitive to the input itself, but IS SENSITIVE to the size of the input.

Observations: Example

ThreeSum: Given N distinct integers, how many triples sum to exactly zero:

```
public class ThreeSum
public static int count(int[] a)
int N = a.length;
int count = 0;
for (int i = 0; i < N; i++)</pre>
  for (int j = i+1; j < N; j++)</pre>
    for (int k = j+1; k < N; k++)
       if (a[i] + a[j] + a[k] == 0)
          count++;
return count;
public static void main(String[] args)
 int[] a = In.readInts(args[0]);
  System.out.println.println(count(a));
```

Observation: Example

• How do we measure running time

- Manual (e.g. stopwatch)
- Use JUnit(look at running times of methods)
- Automatic (build it into the program). Can use the Stopwatch() class.

```
public static void main(String[] args)
{
  int[] a = In.readInts(args[0]);
  Stopwatch stopwatch = new Stopwatch();
  System.out.println(ThreeSum.count(a));
  double time = stopwatch.elapsedTime();
  System.out.println("elapsed time " + time);
}
```

Observation: Empirical Analysis

Running for different size input (N):

N	time (seconds) †
250	0.0
500	0.0
1,000	0.1
2,000	0.8
4,000	6.4
8,000	51.1
16,000	?

Observation: Data Analysis

- Plot the running time T(N) against input size (N)
- How can we predict values for 16K
 - get an equation for the trendline in the graph
 - Equation can be used to calculate how long will my program take, as a function of the input size.
- One approach:
 - use a tool that can "fit" an equation to the trendline.
 - use the equation to predict other values

Observation: Data analysis with Spreadsheet

- Chart data as X-Y plot
- Insert Trendline
- More info here: <u>http://www.cpp.</u> <u>edu/~seskandari/docum</u> <u>ents/Curve_Fitting_Willia</u> <u>m_Lee.pdf</u>
- Use equation for trendline to predict future values:
- Aproximating eqn: T(N) = 1.006x10⁻¹⁰ N³

Observation: Data Analysis using logs

- Log-log plot: Plot running time T (N) vs. input size N using log-log scale.
- Get straight line with slope of 3:
 - eqn. of straight line is y=mx + c
 - for this graph: Ig(T(N)) = b Ig N + c
 - b=2.99, c=-33.2103
- T(N)=aN^b, where a=2^c using power law <u>https://en.wikipedia.org/wiki/Power_law</u>
- Now we can make a Hypothesis for running time
 - Running time is approx. $2^{-33.21}N^3$ T(N)=1.006x10⁻¹⁰ N³
- Same as previous slide...

Prediction and Validation

- Hypothesis: Running time is 1.006x10⁻¹⁰ N³ where N is the size of the input
- Predictions:
 - \circ 51 seconds for N=8000
 - 408.1 seconds for N=16000
- Observations:

Hypothesis validated!

N	time (seconds) †
8,000	51.1
8,000	51.0
8,000	51.1
16,000	410.8

What effects the Running Time

- System independent effects:
 - Algorithm
 - Input Data
- System dependent effects
 - hardware: processor, memory
 - software: compiler, garbage collection etc.
 - System: operating system, network, other apps...
- System independent effects determine the exponent in eqn.
- Both System independent and dependent effects determine the constant
- Difficult to get precise measurement but easier to obtain measurements
 - no animals were harmed in this experiment!
 - Can run large number of experiments.

- Example: 1-Sum
 - How many instructions are performed in the code:

operation	frequency
variable declaration	2
assignment statement	2
less than compare	N + 1
equal to compare	Ν
array access	Ν
increment	<i>N</i> to 2 <i>N</i>

Example: 2-sum

- How many instructions as a function of input size
- 1. int count = 0;

5.

- 2. for (int i = 0; i < N; i++)
- 3. for (int j = i+1; j < N; j++)
- 4. if (a[i] + a[j] == 0)
 - count++;
- Line 4 is executed (N-1)+(N-2)+(N-3)+...
 +2+1+0 times

Example: 2-sum

- 1. int count = 0;
- 2. for (int i = 0; i < N; i++)
- 3. for (int j = i+1; j < N; j++)
- 4. if (a[i] + a[j] == 0)
 5. count++;

 NEED TO SIMPLIFY!!!

operation	frequency
variable declaration	<i>N</i> + 2
assignment statement	<i>N</i> + 2
less than compare	$\frac{1}{2}(N+1)(N+2)$
equal to compare	$\frac{1}{2}N(N-1)$
array access	N(N-1)
increment	$\frac{1}{2}N(N-1)$ to $N(N-1)$

tedious to count exactly

Mathematical Cost Models: Simplify

"...we shall therefore only attempt to count the number of multiplications and recordings." — Alan Turing

- Identify a basic operation
 - usually the operation that executes the most number of times
 - Can ignore other operations
- In 2-sum, the array accesses in the "if" statement is a good choice:

```
int count = 0;
for (int i = 0; i < N; i++)
for (int j = i+1; j < N; j++)
if (a[i] + a[j] == 0)
count++;
```

Mathematical Cost Model: Simplicity

Time efficiency can analysed by determining the number of repetitions of the <u>basic operation</u> as a function of <u>input size</u>. For big input sizes, N: $T(N) \approx c_{op}C(N)$

 $\begin{array}{c} \mathsf{Running} \\ \mathsf{Time} \end{array} \approx \mathsf{C}_{\mathsf{op}} \mathsf{C}(\mathsf{N}) \\ \mathsf{Number of times basic operation is} \\ \mathsf{executed} \\ \end{array}$

Mathematical Cost Model: Simplify

Use "Tilda Notation"

- Estimate Number of Times Basic Operation is executed and use Higher Order term:
- For 2-Sum example:
 - Basic Operation runs N(N-1)

 $C(N) = N^2 - N \sim N^2$

	frequency	operation
	<i>N</i> + 2	variable declaration
	<i>N</i> + 2	assignment statement
	$\frac{1}{2}(N+1)(N+2)$	less than compare
	$\frac{1}{2}N(N-1)$	equal to compare
cost model = a	N (N − 1) ←	array access
	½ N (N−1) to N (N−1)	increment

Mathematical Cost Model

3-Sum Example:

```
1int N = a.length;
2 int count = 0;
3 for (int i = 0; i < N; i++)
4 for (int j = i+1; j < N; j++)
5 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
6
7
          count++;
return count;
Basic Operation (line 6: "touches the array 3 times)
Number of times Line 6 executes: N(N-1)(N-2)/6 \sim N^3/6 (Can calculate using discrete maths or online tool:
http://www.wolframalpha.com/)
Number of times array accessed C(N) ~ N<sup>3</sup>/2
```

Wolfram Alpha Enter what you want to calculate or know abo sum(sum(sum(1, k=j+1..N),j=i+1..N),i=1..N) 🖼 IO 🔳 😰 Sum: $\sum_{i=1}^{N} \left(\sum_{i=i+1}^{N} \left(\sum_{k=i+1}^{N} 1 \right) \right) = \frac{1}{6} N \left(N^2 - 3N + 2 \right)$

What does this tell us about how the algorithm running time grows as you increase size?

 $T(N) = c_{0D}C(N) = c_{0D}N^{3}/3$

Mathematical Cost Model: Summary

Develop a Mathematical model using the following steps

- Develop an input model, including a definition of the problem size(e.g. size of array)
- Identify the inner loop.
- Define a cost model that includes the "basic operation" in the inner loop.
- Determine the frequency of execution of the basic operation for the given input.

Doing so might require mathematical analysis...

Order of Growth Classification

Common Order of Growth classifications

- If $f(N) \sim cg(N)$ for some constant c>0 then the Order of Growth of f(n) is g(n).
 - example Threesum:

```
C(N) \sim 1/2N^3 so order of growth is N^3
```

```
int count = 0;
```

Common order-of-growth classifications

• Most algorithms can be classified using the following functions of their input size:

1, log N, N, NlogN, N^2 , N^3 , and 2^N

Common order-of-growth classifications

order of growth	name	typical code framework	description	example	<i>T</i> (2 <i>N</i>) / T(<i>N</i>)
1	constant	a = b + c;	statement	add two numbers	1
log N	logarithmic	while (N > 1) { N = N / 2; }	divide in half	binary search	~ 1
N	linear	<pre>for (int i = 0; i < N; i++) { }</pre>	loop	find the maximum	2
N log N	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N ²	quadratic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { }</pre>	double loop	check all pairs	4
N ³	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }</pre>	triple loop	check all triples	8
2 ^N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

Demo - Binary Search

- Problem: Given a SORTED array and a key, find index of the key in the array?
- Solution: Use suitable search algorithm, Binary Search
 - Compare key against middle
 - Smaller:- go left
 - Larger:- go right
 - Equal:- return location

```
public static int binarySearch(int[] a, int key)
{
  int lo = 0, hi = a.length-1;
  while (lo <= hi)
  {
     int mid = lo + (hi - lo) / 2;
     if (key < a[mid]) hi = mid - 1;
     else if (key > a[mid]) lo = mid + 1;
     else return mid;
  }
}
```

```
return -1;
```

```
}
```

Example - Binary Search Analysis

- What's the basic operation
 - 1st key comparison runs every time
- C(N) is the basic operation count in a sub-array of size <=N
- C(N) is less than or equal to the number of key comparisons to search left or right half of the array, C(N/2) + 1. (Apply recurrence to
- This is a recurrence relation.

```
C(N) \le C(N/2)+1 for N>1 and C(1)=1
```

Assume N is a power of 2: N=2^x

• Binary Search is Logarithmic

```
C(N) \leq C(N/2) + 1
<=C(N/4) + 1 + 1
<=C(N/8) + 1 + 1 + 1
......
<=C(N/N) + 1 + 1 + ... + 1 \text{ (i.e. } <=C(N/2^{x}) + 1 + x)
= 1 + lgN
```

Example - 2Sum

- See the 2Sum algorithm, determine the number of pairs of integers that sum to 0.
- 2Sum solved in quadratic time (N²)
- Possible improvement
 - a. sort array a (MergeSort: NlogN)
 - b. for each nimber a[i] search for a[i] (Binary Search: NlogN)
- Overall Running time: NLogN

```
int count = 0;
for (int i = 0; i < N; i++)
for (int j = i+1; j < N; j++)
    if (a[i] + a[j] == 0) count++;
```

```
Arrays.sort(a);
int N = a.length;
int cnt = 0;
for (int i = 0; i < N; i++)
if (BinarySearch.rank(-a[i], a) >
i)
cnt++;
return cnt;
```

Example - 3Sum improvement

Algorithm:

- 1. Sort Array a[]
- For each pair of numbers a[i] and a[j] binary search for -(a[i] +a[j])

Analysis

- 1. Sort is N² (Insertion Sort)
- 2. Binary search is N²LogN

```
Arrays.sort(a);
int N = a.length;
int cnt = 0;
for (int i = 0; i < N; i++)
for (int j = i+1; j < N; j++)
if (BinarySearch.rank(-a[i]-a[j], a) > j)
cnt++;
return cnt;
```

Example: 2Sum and 3Sum Comparisons

Typically, better order of growth means faster running times

Costs of algorithms to solve the 2-sum and 3-sum problems

Algorithm Theory

Analysis Types

• Best Case

- Lower bound on cost
- Determined by "easiest input".

• Worst Case

- Upper bound on cost
- Provides a worst case guarantee

• Average Case

- Expected cost of random input
- Predictor for performance

Common Notation in Algorithm Theory

notation	provides	example	shorthand for	used to
Big Theta	asymptotic order of growth	$\Theta(N^2)$	$\frac{1/2}{N^2}$ 10 N ² 5 N ² + 22 N log N + 3N :	classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	O(<i>N</i> ²)	$10 N^{2}$ $100 N$ $22 N \log N + 3 N$ \vdots	develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	$\Omega(N^2)$	$\frac{1/2}{N^2} N^2$ N ⁵ N ³ + 22 N log N + 3 N :	develop lower bounds

Theory of Algorithms

Goals.

- Establish "difficulty" of a problem.
- Develop "optimal" algorithms.

Approach.

- Eliminate variability in input model: focus on the worst case.
- Establish Upper bound and Lower bound.

Upper bound is performance guarantee

Lower bound. proof that no algorithm can do better.

In-Class Example

```
private static int maxValue(char[] chars) {
    int max = chars[0];
    for (int ktr = 1; ktr < chars.length; ktr++) {
        if (chars[ktr] > max) {
            max = chars[ktr];
        }
    }
    return max;
}
```

- Input Size?
- Basic Operation?
- Best Case?
- Worst Case?
- Average Case?
- Classification

In-Class Example

- Input Size?
- Basic Operation?
- Best Case?
- Worst Case?

ALGORITHM UniqueElements(A[0..n - 1]) //Determines whether all the elements in a given array are distinct //Input: An array A[0..n - 1]//Output: Returns "true" if all the elements in A are distinct // and "false" otherwise for $i \leftarrow 0$ to n - 2 do for $j \leftarrow i + 1$ to n - 1 do if A[i] = A[j] return false

return true

In-Class Example

ALGORITHM *Binary*(*n*)

- Input Size?
- Basic Operation?
- Best Case?
- Worst Case?
- Average Case?

//Input: A positive decimal integer *n* //Output: The number of binary digits in *n*'s binary representation $count \leftarrow 1$ while n > 1 do $count \leftarrow count + 1$ $n \leftarrow \lfloor n/2 \rfloor$

return count