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Why analyse algorithms
● Programmers need to develop working solutions to problem
● Algorithm analysis helps developers to write programs that:

○ provide an optimal working solution
○ predict resources and time necessary to execute a program
○ give guarantees regarding performance.

● Helps to avoid performance problems
○ Clients get poor performance because programmer didn’t understand or investigate 

performance characteristics of program.



Scientific Method
Approach that scientists use to understand the natural world

■ Observe some feature of the natural world, generally with 
precise measurements.

■ Hypothesise a model that is consistent with the 
observations.

■ Predict events using the hypothesis.

■ Verify the predictions by making further observations.

■ Validate by repeating until the hypothesis and 
observations agree.



Scientific Method
Key features of the scientific method:

● Experiments must be reproducible
○ so that you can convince others.

● Your hypothesis must be falsifiable
○ “No amount of experimentation can ever prove me right; a 

single experiment can prove me wrong”

● Are these scientific hypothesis?:
○ “There is life on other planets”

○ “Two objects will hit the ground at the same time when 
dropped from the same height(excluding air resisitance)”



Observations
● We can make quantitative measurements 

of the running time of our programs.
○ Easy compared to other sciences (don’t need to 

build a hadron collider)

● Answers a core question: How long will my 
program take?

● Initial observation, the problem size:
○ The problem size can be the size of input or value 

of input)

○ Most of the time, programming running time is 

insensitive to the input itself, but IS SENSITIVE to 
the size of the input.



Observations: Example
ThreeSum: Given N distinct integers, how many triples sum to exactly zero:
public class ThreeSum

{

public static int count(int[] a)

{

 int N = a.length;

 int count = 0;

 for (int i = 0; i < N; i++)

   for (int j = i+1; j < N; j++)

     for (int k = j+1; k < N; k++)

       if (a[i] + a[j] + a[k] == 0)

          count++; 

 return count;

}

public static void main(String[] args)

{

  int[] a = In.readInts(args[0]);

  System.out.println.println(count(a));

}

}



Observation: Example
● How do we measure running time

○ Manual (e.g. stopwatch)
○ Use JUnit(look at running times of methods)
○ Automatic (build it into the program). Can use the Stopwatch() class.

public static void main(String[] args)

{

int[] a = In.readInts(args[0]);

Stopwatch   stopwatch = new Stopwatch(); 

System.out.println(ThreeSum.count(a)); 

double  time = stopwatch.elapsedTime(); 

System.out.println("elapsed time " + time);

}



Observation: Empirical Analysis
Running for different size input (N):



Observation: Data Analysis
● Plot the running time T(N) against input size (N)
● How can we predict values for 16K

○ get an equation for the trendline in the graph

○ Equation can be used to calculate how long will my program 
take, as a function of the input size.

● One approach:
○ use a tool that can “fit” an equation to the trendline.
○ use the equation to predict other values 



Observation: Data analysis with Spreadsheet
● Chart data as X-Y plot
● Insert Trendline
● More info here:

http://www.cpp.
edu/~seskandari/docum
ents/Curve_Fitting_Willia
m_Lee.pdf

● Use equation for 
trendline to predict future 
values:

● Aproximating eqn:
T(N) = 1.006x10-10 N3

http://www.cpp.edu/~seskandari/documents/Curve_Fitting_William_Lee.pdf
http://www.cpp.edu/~seskandari/documents/Curve_Fitting_William_Lee.pdf
http://www.cpp.edu/~seskandari/documents/Curve_Fitting_William_Lee.pdf
http://www.cpp.edu/~seskandari/documents/Curve_Fitting_William_Lee.pdf
http://www.cpp.edu/~seskandari/documents/Curve_Fitting_William_Lee.pdf


Observation: Data Analysis using logs
● Log-log plot: Plot running time T (N) vs. input size N using log-log scale.
● Get straight line with slope of 3:

○ eqn.  of straight line is y=mx + c 
○ for this graph: lg(T (N)) = b lg N + c
○ b=2.99, c=-33.2103

● T(N)=aNb, where a=2c using power law
https://en.wikipedia.org/wiki/Power_law

● Now we can make a Hypothesis for running
time

○ Running time is approx. 2-33.21N3

T(N)=1.006x10-10 N3

● Same as previous slide...

https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Power_law


Prediction and Validation
● Hypothesis: Running time is 1.006x10-10 N3  where N is the size of the input
● Predictions:

○ 51 seconds for N=8000
○ 408.1 seconds for N=16000

● Observations:

Hypothesis validated!



What effects the Running Time
● System independent effects:

○ Algorithm
○ Input Data

● System dependent effects
○ hardware: processor, memory
○ software: compiler, garbage collection etc.

○ System: operating system, network, other apps…

● System independent effects determine the exponent in eqn.
● Both System independent and dependent effects determine the constant

● Difficult to get precise measurement but easier to obtain measurements
○ no animals were harmed in this experiment!
○ Can run large number of experiments.



Mathematical Models for Algorithms



Mathematical Models for Algorithms
● Example: 1-Sum

○ How many instructions are performed in the code:

int count = 0;

for (int i = 0; i < N; i++)

if (a[i] == 0)

count++;



Mathematical Models for Algorithms
Example: 2-sum

● How many instructions as a function of 
input size

1. int count = 0;

2. for (int i = 0; i < N; i++)

3.    for (int j = i+1; j < N; j++)

4.        if (a[i] + a[j] == 0)

5.           count++;

● Line 4 is executed (N-1)+(N-2)+(N-3)+...
+2+1+0 times



Mathematical Models for Algorithms
Example: 2-sum

1. int count = 0;

2. for (int i = 0; i < N; i++)

3.    for (int j = i+1; j < N; j++)

4.        if (a[i] + a[j] == 0)

5.           count++;

● NEED
TO
SIMPLIFY!!!



Mathematical Cost Models: Simplify
 “...we shall therefore only attempt to count the number of multiplications and 
recordings. ” — Alan Turing

● Identify a basic operation
○ usually the operation that executes the most number of times
○ Can ignore other operations

● In 2-sum, the  array accesses in the “if” statement is a good choice:

int count = 0;

for (int i = 0; i < N; i++)

  for (int j = i+1; j < N; j++)

    if (a[i] + a[j] == 0)

      count++;



Mathematical Cost Model: Simplicity

Time efficiency can analysed by determining the 
number of repetitions of the basic operation as a 
function of input size. For big input sizes, N:

T(N)  ≈ copC(N)

Running 
Time

Execution time of basic operation

Number of times basic operation is 
executed



Mathematical Cost Model: Simplify
Use “Tilda Notation”

● Estimate Number of Times Basic Operation is executed and use Higher Order 
term:

● For 2-Sum example:
○ Basic Operation runs N(N-1)

C(N) = N2-N ∼ N2



Mathematical Cost Model
3-Sum Example:

1int N = a.length;

2 int count = 0;

3 for (int i = 0; i < N; i++)

4   for (int j = i+1; j < N; j++)

5     for (int k = j+1; k < N; k++)

6       if (a[i] + a[j] + a[k] == 0)

7          count++; 

 return count;

Basic Operation (line 6: “touches the array 3 times)

Number of times Line 6 executes: N(N-1)(N-2)/6 ∼ N3/6 (Can calculate using discrete maths or online tool:
http://www.wolframalpha.com/ )
Number of times array accessed C(N) ∼ N3/2

What does this tell us about how the algorithm running time grows as you increase size?

T(N) = copC(N) = copN
3/3

http://www.wolframalpha.com/
http://www.wolframalpha.com/


Mathematical Cost Model: Summary
Develop a Mathematical model using the following steps

■ Develop an input model, including a definition of the problem size(e.g. size of 
array)

■ Identify the inner loop.

■ Define a cost model that includes the “basic operation” in the inner loop.

■ Determine the frequency of execution of the basic operation for the given input.

Doing so might require mathematical analysis...



Order of Growth Classification



Common Order of Growth classifications
● If f(N) ∼ cg(N) for some constant c>0 then the Order of Growth of f(n) is g(n).

○ example Threesum:
C(N) ∼ 1/2N3 so order of growth is N3

int count = 0;

for (int i = 0; i < N; i++)

  for (int j = i+1; j < N; j++)

     for (int k = j+1; k < N; k++)

         if (a[i] + a[j] + a[k] == 0) count++;



Common order-of-growth classifications
● Most algorithms can be classified using the following functions of their input 

size:
1, log N, N, NlogN,N2 ,N3, and 2N



Common order-of-growth classifications



Demo - Binary Search
● Problem: Given a SORTED 

array and a key, find index of 
the key in the array?

● Solution: Use suitable search 
algorithm, Binary Search

○ Compare key against middle
○ Smaller:- go left
○ Larger:- go right
○ Equal:- return location

public static int binarySearch(int[] a, int key)

{

int lo = 0, hi = a.length-1;

while (lo <= hi)

{

int mid = lo + (hi - lo) / 2;

if (key < a[mid]) hi = mid - 1;

else if (key > a[mid]) lo = mid + 1;

else return mid;

}

return -1;

}



Example - Binary Search Analysis
● What’s the basic operation

○ 1st key comparison - runs every time

● C(N)  is the basic operation count in a sub-array of size <=N 
● C(N) is less than or equal to the number of key comparisons to search left or 

right  half of the array, C(N/2) + 1. 
● This is a recurrence relation.

C(N) <= C(N/2)+1 for N>1 and C(1)=1

Assume N is a power of 2: N=2x

● Binary Search is Logarithmic

Apply recurrence to 
1st term

C(N)<=C(N/2) +1
       <=C(N/4) + 1 + 1 
      <=C(N/8) + 1 + 1 + 1
       ……..
       <=C(N/N) + 1 + 1+…+1  (i.e. <=C(N/2x) + 1 + x)
        = 1+lgN 



Example - 2Sum 
● See the 2Sum algorithm, 

determine the number of 
pairs of integers that sum to 
0.

● 2Sum solved in quadratic 
time (N2)

● Possible improvement
a. sort array a (MergeSort: NlogN)

b. for each nimber a[i] search for -
a[i] (Binary Search: NlogN)

● Overall Running time: NLogN

int count = 0;

for (int i = 0; i < N; i++)

  for (int j = i+1; j < N; j++)

     if (a[i] + a[j] == 0) count++;

Arrays.sort(a);

 int N = a.length;

int cnt = 0;

for (int i = 0; i < N; i++)

 if (BinarySearch.rank(-a[i], a) >

 i)

 cnt++;

return cnt;



Example - 3Sum improvement
Algorithm:

1. Sort Array a[]
2. For each pair of numbers a[i] 

and a[j] binary search for -(a[i]
+a[j])

Analysis

1. Sort is N2 (Insertion Sort)
2. Binary search is N2LogN

Arrays.sort(a);

 int N = a.length;

 int cnt = 0;

for (int i = 0; i < N; i++)

for (int j = i+1; j < N; j++)

 if (BinarySearch.rank(-a[i]-a[j], a) > j)

 cnt++;

return cnt;



Example: 2Sum and 3Sum Comparisons
Typically, better order of growth means faster running times



Algorithm Theory



Analysis Types
● Best Case

○ Lower bound on cost
○ Determined by “easiest input”. 

● Worst Case
○ Upper bound on cost
○ Provides a worst case guarantee

● Average Case
○ Expected cost of random input
○ Predictor for performance



Common Notation in Algorithm Theory



Theory of Algorithms
Goals.

- Establish "difficulty" of a problem.

- Develop "optimal" algorithms.

Approach.

- Eliminate variability in input model: focus on the worst case.

- Establish Upper bound and Lower bound.

Upper bound is performance guarantee

Lower bound. proof that no algorithm can do better.



In-Class Example
private static int maxValue(char[] chars) {

    int max = chars[0];

    for (int ktr = 1; ktr < chars.length; ktr++) {

        if (chars[ktr] > max) {

            max = chars[ktr];

        }

    }

    return max;

}

● Input Size?
● Basic Operation?
● Best Case?
● Worst Case? 
● Average Case?
● Classification



In-Class Example

● Input Size?
● Basic Operation?
● Best Case?
● Worst Case?



In-Class Example

● Input Size?
● Basic Operation?
● Best Case?
● Worst Case? 
● Average Case?


