
Comparing Objects
Frank Walsh

2

3

Two Sorts

4

// Create a list of Users
ArrayList<String> al = new ArrayList<String>();
al.add(new User(“Frank”,”Walsh”));
al.add(new User(“Mary”,”Power”));
al.add(“new User(“Frank”,”Dawson”));
al.add(new User(“Jack”,”OConor”));
al.add(new User(“Bob”,”Dylan”));

/* Collections.sort method is sorting the
elements of ArrayList in ascending order. */
Collections.sort(al);

// Let us print the sorted list
System.out.println("List after the use of" +

" Collection.sort() :\n" + al);

// Create a list of strings
ArrayList<String> al = new ArrayList<String>();
al.add("Geeks For Geeks");
al.add("Friends");
al.add("Dear");
al.add("Is");
al.add("Superb");

/* Collections.sort method is sorting the
elements of ArrayList in ascending order. */
Collections.sort(al);

// Let us print the sorted list
System.out.println("List after the use of" +

" Collection.sort() :\n" + al);

5

Comparing Stuff

• Four methods underlie many of Java’s important Collection
types: equals, compare and compareTo, and hashCode
• To put your own objects into a Collection, you need to ensure that these

methods are defined properly

• Any collection with some sort of membership test uses equals (which, in
many cases, defaults to ==)

• Any collection that depends on sorting requires larger/equal/smaller
comparisons (compare or compareTo)

• Any collection that depends on hashing requires both equality testing
and hash codes (equals and hashCode)

• Any time you implement hashCode, you must also implement equals

• Some of Java’s classes, such as String, already define all of these
properly for you
• For your own objects, you have to do it yourself

6

Comparing our own objects
• The Object class provides public boolean

equals(Object obj) and public int hashCode()
methods
• For objects that we define, the inherited equals and

hashCode methods use the object’s address in
memory

• We can override these methods
• If we override equals, we should override hashCode
• If we override hashCode, we must override equals

• The Object class does not provide any methods
for “less” or “greater”—however,
• There is a Comparable interface in java.lang
• There is a Comparator interface in java.util

7

Outline of a Student class

public class Student implements Comparable<Student> {

public String name;

public int score;

public Student(String name, int score) {

this.name = name;

this.score = score;

}

@Override

public int compareTo(Student that) {

return this.score-that.score;

}

}

8

Include a main method
public static void main(String args[]) {

TreeSet<Student> set = new TreeSet<Student>();

set.add(new Student("Ann", 87));

set.add(new Student("Bob", 83));

set.add(new Student("Cat", 99));

set.add(new Student("Dan", 25));

set.add(new Student("Eve", 76));

Iterator<Student> iter = set.iterator();

while (iter.hasNext()) {

Student s = iter.next();

System.out.println(s.name + " " + s.score);

}

}

9

Using the TreeSet

• Use an iterator to print out the values in order, and
get the following result:

Dan 25
Eve 76
Bob 83
Ann 87
Cat 99

• Iterator “knows” that it should sort Students by
score, rather than, say, by name from the
compareTo() method.

10

Using a separate Comparator

• In the program we just finished, Student implemented
Comparable

• Therefore, it had a compareTo method

• We could sort students only by their score

• If we wanted to sort students another way, such as by
name, we are out of luck

• Now we will put the comparison method in a separate class
that implements Comparator instead of Comparable

• This is more flexible (you can use a different Comparator to sort
Students by name or by score), but it’s also clumsier

• Comparator is in java.util, not java.lang

• Comparable requires a definition of compareTo but Comparator
requires a definition of compare

11

Outline of StudentComparator
public class StudentComparator implements

Comparator<Student> {

@Override

public int compare(Student s1, Student s2) {

……

}

}

• Note: When we are using this Comparator, we don’t need
the compareTo method in the Student class

12

The compare method
public int compare(Student s1, Student s2) {

return s1.score – s2.score;
}

• This differs from compareTo(Object o) in Comparable

in these ways:
• The name is different

• It takes both objects as parameters, not just one

13

Update main method
• The main method is just like before, except that

instead of

TreeSet<Student> set = new TreeSet<Student>();

We have

Comparator<Student> comp = new StudentComparator();
TreeSet<Student> set = new TreeSet<Student>(comp);

14

When to use each
• The Comparable interface is simpler and less work

• Your class implements Comparable

• You provide a public int compareTo(…) method

• You will use the same comparison method every time

• Use for “natural” or “default” sort order.

• The Comparator interface is more flexible but slightly
more work
• Create as many different classes that implement Comparator

as you like

• You can sort different data structures
• Construct/sort TreeSet or TreeMap using the comparator you want

• For example, sort Students by score or by name

15

Sorting differently
• Suppose you have students sorted by score, in a TreeSet you call

studentsByScore

• Now you want to sort them again, this time by name
• Create the following Comparator

public class StudentByNameComparator implements
Comparator<Student> {

@Override

public int compare(Student s1, Student s2) {

return s1.name.compareToIgnoreCase(s2.name);

}

}

16

Sorting differently
Add to the Main Method:
TreeSet<Student> setByName = new

TreeSet<Student>(new StudentByNameComparator());

setByName.addAll(set);

iter = setByName.iterator();

System.out.println("\nStudents by Name");

while (iter.hasNext()) {

Student s = iter.next();

System.out.println(s.name + " " + s.score);

}

}

17

Solution

• See this solution in the examples GitHub Repo…

https://github.com/fxwalsh/data-struct-algo-2017-
examples.git

18

https://github.com/fxwalsh/data-struct-algo-2017-examples.git

