Comparing Objects

Frank Walsh

Goal of sorting

* The objective of a sorting algorithm is to
rearrange the items such that their keys are
ordered according to some well-defined
ordering rule (usually numerical or
alphabetical order)

* Each item contains a key
* Keys as SORTABLE.

Example

 Unsorted

Chen 3 A 991-878-4944 308 Blair
Rohde z A 232-343-5555 343 Forbes
Gazsi 4 B FOG-093-3673 101 Erown
itErm * Furia A F66-093-3873 101 Erown
Kanaga 3 B B9E-122-3643 22 Brown
Andrews 3 A fE4-480-0023 97 Lirlle
key & m 4 C B74-DEE-1212 121 Whitman
* S 0 rte d Andrews 3 A GG64-480-0023 097 Little
Battle 4 C B74-088-1212 121 Whitman
Chen 3 A O01-878-4044 108 Blair
Furia 1 A FEE-093.0873 101 Brown
Gazsi 4 E 7EG-093.0873 101 Brown
Kanaga 3 E B98-122-9643 22 Brown
Rohde 2 A 232-343-5555 343 Forbes

Two Sorts

// Create a list of strings
ArrayList<String> al = new ArraylList<String>();

al.
al.
al.
al.
al.

/*

add("Geeks For Geeks");
add("Friends");
add("Dear");

add("Is");
add("Superb");

Collections.sort method is sorting the

elements of ArraylList in ascending order. */
Collections.sort(al);

//

Let us print the sorted list

System.out.println("List after the use of" +

" Collection.sort() :\n" + al);

// Create a list of Users
ArrayList<String> al = new ArrayList<String>();

al.

al
al
al
al

/*

add(new User(“Frank”,”Walsh”));

.add(new User(“Mary”,”’Power”));
.add(“new User(“Frank”,”Dawson”));
.add(new User(“Jack”,”0Conor”));
.add(new User(“Bob”,”Dylan”));

Collections.sort method is sorting the

elements of ArraylList in ascending order. */
Collections.sort(al);

//

Let us print the sorted list

System.out.println("List after the use of" +

" Collection.sort() :\n" + al);

Comparable Interface

* Q.How does the same sort() method in
previous examples work with Files, Strings,
Doubles???

* A.They all implement the Comparable

interface. (Remember interfaces from 1st
Week)

* Sometimes known as “Callback”

Comparing Stuff

* Four methods underlie many of Java’s important Collection
types: , and , and

* To put your own objects into a Collection, you need to ensure that these
methods are defined properly

* Any collection with some sort of membership test uses (which, in
many cases, defaults to ==)

* Any collection that depends on sorting requires larger/equal/smaller

comparisons (or)
* Any collection that depends on hashing requires both equality testing
and hash codes | and)
* Any time you implement , you must also implement
* Some of Java’s classes, such as , already define all of these

properly for you
* For your own objects, you have to do it yourself

Comparing our own objects

* The class provides
and
methods

* For objects that we define, the inherited and
methods use the object’s address in
memory

* We can override these methods
* If we override , we should override
* If we override , we must override

* The class does not provide any methods
for “less” or “greater”—however,
* Thereis a interface in
* There is a interface in

Outline of a Student class

public class Student implements Comparable<Student> ({

public String name;

public int score;

public Student(String name, int score) {
this.name = name;
this.score = score;

}

@Override
public int compareTo (Student that) ({

return this.score-that.score;

Include a main method

public static void main(String args[]) {
TreeSet<Student> set = new TreeSet<Student> () ;
set.add (new Student("Ann", 87));
set.add (new Student("Bob", 83));
set.add (new Student("Cat", 99));
set.add (new Student ("Dan", 25));
set.add (new Student ("Eve", 76));
Tterator<Student> iter = set.iterator();
while (iter.hasNext()) {
Student s = iter.next();

System.out.println(s.name + " " + s.score);

Using the TreeSet

e Use an iterator to print out the values in order, and
get the following result:

* lterator “knows” that it should sort S by
, rather than, say, by from the
compareTo() method.

Using a separate Comparator

* In the program we just finished, implemented

* Therefore, it had a method

* We could sort students only by their score

* |f we wanted to sort students another way, such as by
name, we are out of luck

* Now we will put the comparison method in a separate class

that implements instead of
* This is more flexible (you can use a different to sort
Students by name or by score), but it’s also clumsier
isin , hot
requires a definition of but

requires a definition of

Outline of StudentComparator

public class StudentComparator implements
Comparator<Student> {

QOverride

public int compare (Student sl1l, Student s2) {

Note: When we are using this Comparator, we don’t need
the method in the class

The compare method

* This differs from in
in these ways:
* The name is different
* |t takes both objects as parameters, not just one

Update main method

* The main method is just like before, except that
instead of

TreeSet<Student> set = new TreeSet<Student>();

We have

Comparator<Student> comp = new StudentComparator(),
TreeSet<Student> set = new TreeSet<Student>(comp);

14

When to use each

* The interface is simpler and less work
* Your class
* You provide a method

* You will use the same comparison method every time
* Use for “natural” or “default” sort order.

* The interface is more flexible but slightly
more work

* Create as many different classes that implement
as you like

* You can sort different data structures
* Construct/sort or using the comparator you want

* For example, sort by or by

Sorting differently

* Suppose you have students sorted by score, in a you call

 Now you want to sort them again, this time by name
* Create the following Comparator

public class StudentByNameComparator implements
Comparator<Student> {

@Override
public int compare (Student sl, Student s2) {

return sl.name.compareToIgnoreCase (s2.name) ;

}

Sorting differently
Add to the Main Method:

TreeSet<Student> setByName = new
TreeSet<Student> (new StudentByNameComparator()) ;

setByName.addAll (set) ;
iter = setByName.iterator();
System.out.println("\nStudents by Name')
while (iter.hasNext()) {

Student s = 1ter.next();

System.out.println(s.name + " " + s.score);

}

17

Solution

* See this solution in the examples GitHub Repo...
https://github.com/fxwalsh/data-struct-algo-2017-

examples.git

18

https://github.com/fxwalsh/data-struct-algo-2017-examples.git

