
Algorithms

3. Recursion

Frank Walsh, Robert O’Connor

Recursion, see Recursion.

PHP: "PHP Hypertext
Preprocessor"

GNU: "GNU's not Unix".

Objectives

● What Is Recursion?
● Tracing a Recursive Method
● Recursive Methods That Return a Value
● Recursively Processing an Array
● The Time Efficiency of Recursive Methods

○ Time Efficiency of countDown
○ Time Efficiency of computing xn

● A Simple Solution to a Difficult Problem
● A Poor Solution to a Simple Problem

What is Recursion?

●It is a problem-solving process
●Breaks a problem into identical but smaller

problems
●Eventually you reach a smallest problem

○Answer is obvious or trivial
●Using that solution enables you to solve

the previous problems
●Eventually the original problem is solved

What is Recursion?

Fig. 4-1 Counting down
from 10.

What is Recursion?

●A method that calls itself is a recursive method

●The invocation is a

○ Recursive call
○ Recursive invocation

/** Task: Counts down from a given positive
integer.
* @param integer an integer > 0 */

public static void countDown(int integer)

{ System.out.println(integer);
if (integer > 1)
countDown(integer - 1);
} // end countDown

When Designing Recursive
Solution

●What part of the solution can you contribute
directly?

●What smaller but identical problem has a
solution that …
○ When taken with your contribution provides solution to

the original problem
●When does the process end?

○ What smaller but identical problem has known solution
○ Have you reached the base case

When Designing Recursive
Solution

●Method definition must provide parameter
○ Leads to different cases
○ Typically includes an if or a switch statement

●One or more of these cases should provide a
non recursive solution
○ The base or stopping case

●One or more cases includes recursive invocation
○ Takes a step towards the base case

Tracing a Recursive Method

●Given:

Data Structures – 4. Recursion

public static void countDown(int integer)

{ System.out.println(integer);
if (integer > 1)
 countDown(integer - 1);
} // end countDown

Fig.4-2 The effect of method call countDown(3)

Tracing a Recursive Method

Data Structures – 4. Recursion

Fig. 4-3 Tracing the
recursive call
countDown(3)

Tracing a Recursive Method

Data Structures – 4. Recursion

Fig. 4-4 The stack of activation records during the
execution of a call to countDown(3)… continued →

Tracing a Recursive Method

Data Structures – 4. Recursion

Fig. 4-4 ctd. The stack of activation records during the
execution of a call to countDown(3)

Note: the recursive
method will use more

memory than an
iterative method due

to the stack of
activation records

Recursive Methods that Return a Value

●Task: Compute the sum
1 + 2 + 3 + … + n for an integer n > 0

Data Structures – 4. Recursion

public static int sumOf(int n)
{ int sum;
if (n = = 1)
 sum = 1; // base case
else
 sum = sumOf(n - 1) + n; // recursive call
return sum;
} // end sumOf

Recursive Methods that Return a Value

Data Structures – 4. Recursion

Fig. 4-5 The stack of activation records
during the execution of a call to sumOf(3)

Recursively Processing an
Array

●When processing array recursively, divide
it into two pieces
○Last element one piece, rest of array another
○First element one piece, rest of array another
○Divide array into two halves

Algorithms – Recursion

Recursively Processing an
Array

Data Structures – 4. Recursion

Fig. 4-6 Two arrays with middle elements
within left halves

Recursively Processing an
Array

●A method that processes an array
recursively

Data Structures – 4. Recursion

public static void displayArray(int array[], int first, int last){
 if(first == last){
 System.out.println(array[first] + “ “);
 }else{
 int mid = (first + last)/2;
 displayArray(array, first, mid);
 displayArray(array, mid+1, last);
 }
} // end displayArray

Time Efficiency of Recursive Methods

●For the countDown method

○The efficiency is O(n)

Data Structures – 4. Recursion

public static void countDown(int integer)

{ System.out.println(integer);
if (integer > 1)
countDown(integer - 1);
} // end countDown

A Simple Solution to a Difficult Problem

Data Structures – 4. Recursion

Fig. 4-7 The initial configuration of the Towers of
Hanoi for three disks

A Simple Solution to a Difficult Problem

Rules for the Towers of Hanoi game
1.Move one disk at a time. Each disk you

move must be a topmost disk.
2.No disk may rest on top of a disk smaller

than itself.
3.You can store disks on the second pole

temporarily, as long as you observe the
previous two rules.

A Simple Solution to a Difficult Problem

Fig. 4-8 The sequence of
moves for solving the

Towers of Hanoi problem
with three disks.

Continued →

A Simple Solution to a Difficult Problem

Fig. 4-8 (ctd) The
sequence of moves for
solving the Towers of

Hanoi problem with three
disks

A Simple Solution to a Difficult Problem

Data Structures – 4. Recursion

Fig. 4-9 The smaller
problems in a recursive
solution for four disks

A Simple Solution to a Difficult Problem

●Algorithm for solution with 1 disk as the
base case

Data Structures – 4. Recursion

Algorithm solveTowers(numberOfDisks, startPole, tempPole,
endPole)

if (numberOfDisks == 1)

Move disk from startPole to endPole

else

{

solveTowers(numberOfDisks-1, startPole, endPole, tempPole)

Move disk from startPole to endPole

solveTowers(numberOfDisks-1, tempPole, startPole, endPole)

}

A Simple Solution to a Difficult Problem

●Algorithm for solution with 0 disks as the
base case

Data Structures – 4. Recursion

Algorithm solveTowers(numberOfDisks, startPole, tempPole,
endPole)

if (numberOfDisks > 0)

{

solveTowers(numberOfDisks-1, startPole, endPole, tempPole)

Move disk from startPole to endPole

solveTowers(numberOfDisks-1, tempPole, startPole, endPole)

}

A Poor Solution to a Simple Problem

●Fibonacci numbers
○First two numbers of sequence are 1 and 1
○Successive numbers are the sum of the

previous two
○1, 1, 2, 3, 5, 8, 13, …

●This has a natural looking recursive
solution
○Turns out to be a poor (inefficient) solution

Data Structures – 4. Recursion

A Poor Solution to a Simple Problem

●The recursive algorithm

Data Structures – 4. Recursion

Algorithm Fibonacci(n)
if (n <= 1)
return 1
else
return Fibonacci(n-1) + Fibonacci(n-2)

A Poor Solution to a Simple
Problem

Data Structures – 4. Recursion

Fig. 4-10 The computation of the
Fibonacci number F6

(a) recursively; (b) iteratively

Time efficiency grows
exponentially with n

Iterative solution is O(n)

Plan for Analysis of Recursive
Algorithms

● Decide on a parameter indicating an input’s size.
● Identify the algorithm’s basic operation.
● Check whether the number of times the basic op. is

executed may vary on different inputs of the same size. (If
it may, the worst, average, and best cases must be
investigated separately.)

● Set up a recurrence relation with an appropriate initial
condition expressing the number of times the basic op. is
executed.

● Solve the recurrence (or, at the very least, establish its
solution’s order of growth) by backward substitutions or
another method.

Example 1: Recursive evaluation of n!
Definition: n ! = 1 x 2 x … x(n-1) x n for n ≥ 1 and 0! = 1

Recursive definition of n!: F(n) = F(n-1) x n for n ≥ 1 and
F(0) = 1

 Size: n
Basic operation: Multiplication
Recurrence relation: F(n) = F(n-1)n ; F(0) = 1 (values of n!)

M(n) =M(n-1) + 1 M(0) = 0(Number of Multiplications)

Example 1 - Recursive Evaluation of n!

1. Input size: n

2. Basic Operation: Multiplication
of Operations different for different inputs of same size:No

3. Recurrence relation for # times basic operation executed:
 M(n)=M(n-1) + 1; M(0)=0;

4. Solving using backward substitution:
= M(n-2) +2 = M(n-3) + 3...= M(n-i) + i
= M(0) + n = n

5. Algorithm is O(M(n-1) + 1) = O(n)

Example 2 - Towers of Hanoi

1. Input size: n disks (n)

2. Basic Operation: Moving a disk
of Operations different for different inputs of same size:No

3. Recurrence relation for # times basic operation executed:
 M(n)=M(n-1) + 1 + M(n-1); M(1)=1;

4. Solving using backward substitution:
M(n)= 2M(n-1) + 1= 2[2M(n-2)+1) + 1=22M(n-2) + 2 + 1
 = 22[2M(n-3)+1) + 2 + 1 = 23M(n-3) +22 + 2 + 1
 = 2iM(n-i) +2i-1 + 2i-2 +... + 2 + 1 = 2iM(n-i) + 2i - 1
let i = n-1
M(n) = 2n-1M(1) + 2n-1 - 1 = 2n-1 + 2n-1 - 1 = 2n- 1
5. Algorithm is O(2M(n-1) + 1) = O(2n) (exponential)

Example 2 - Towers of Hanoi
Say every move takes 1millisecond(1x10-6)
 T(n) = CopM(n);
 Cop=1x10-6

 M(n) = 2n

To solve puzzle with 5 disks:
 T(5) = 1x10-6 (25) = 32 milliseconds
To solve puzzle with 15 disks:
 T(15) = 0.033 seconds
To solve puzzle with 30 disks:
 T(30) = 1074 seconds = 17 minutes
To solve puzzle with 50 disks:
 T(50) = 1.125 x 109 seconds = 36 years!

Exponential algorithms are not advised for large input sizes!

Summary

●Recursion is a problem-solving process that
breaks a problem into identical but smaller
problems

●The definition of a recursive method is that is
must contain logic that involves a parameter to
the method and leads to different cases. One or
more of these cases are base (stopping) cases,
as they provide a solution that does not require
further recursion.

Data Structures – 4. Recursion

Summary

●For each call to a method, the values of
the method’s parameters and local
variables are stored in a Stack, that
organises them chronologically. The most
recent at the top. In this way, execution of
a recursive method can be suspended and
invoked again when new values are
obtained.

Data Structures – 4. Recursion

Summary

●A recursive method that process an array often
divides the array into portions. Recursive calls to
the method work on each of these array portions

●A recursive method that processes a linked list
needs a reference to its first node as a
parameter

●Any solution to the Towers of Hanoi problem
with n disks requires at least 2n -1 moves. A
recursive solution is clear and efficient

Data Structures – 4. Recursion

Summary

●Each number is the Fibonacci sequence (after
the first two) is the sum of the previous two
numbers. Computing a Fibonacci sequence
recursively is quite inefficient, as the required
previous numbers are computed several times
each

Data Structures – 4. Recursion

Bibliography

●Frank M. Carrano & Walter Savitch, “Data
Structures and Abstractions with Java”, Prentice
Hall/Pearson Education, 2003

●David J. Barnes & Michael Kölling, “Objects First
with Java: A Practical Introduction using BlueJ”,
Prentice Hall / Pearson Education, 2006

●Eclipse Software Development Kit www.eclipse.
org

Data Structures – 4. Recursion

http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/

