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Recursion, see Recursion.
 
 
PHP: "PHP Hypertext 
Preprocessor"
 
GNU: "GNU's not Unix".



Objectives

● What Is Recursion?
● Tracing a Recursive Method
● Recursive Methods That Return a Value
● Recursively Processing an Array
● The Time Efficiency of Recursive Methods

○ Time Efficiency of countDown
○ Time Efficiency of computing xn

● A Simple Solution to a Difficult Problem
● A Poor Solution to a Simple Problem



What is Recursion?

●It is a problem-solving process
●Breaks a problem into identical but smaller 

problems
●Eventually you reach a smallest problem

○Answer is obvious or trivial
●Using that solution enables you to solve 

the previous problems
●Eventually the original problem is solved



What is Recursion?

Fig. 4-1 Counting down 
from 10.



What is Recursion?

●A method that calls itself is a recursive method

 
 
●The invocation is a 

○ Recursive call
○ Recursive invocation

/** Task: Counts down from a given positive 
integer.
* @param integer an integer > 0 */

public static void countDown(int integer)

{ System.out.println(integer);
if (integer > 1)
countDown(integer - 1);
} // end countDown



When Designing Recursive 
Solution

●What part of the solution can you contribute 
directly?

●What smaller but identical problem has a 
solution that …
○ When taken with your contribution provides solution to 

the original problem
●When does the process end?

○ What smaller but identical problem has known solution
○ Have you reached the base case



When Designing Recursive 
Solution

●Method definition must provide parameter
○ Leads to different cases
○ Typically includes an if or a switch statement

●One or more of these cases should provide a 
non recursive solution
○ The base or stopping case

●One or more cases includes recursive invocation
○ Takes a step towards the base case



Tracing a Recursive Method

●Given:
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public static void countDown(int integer)

{ System.out.println(integer);
if (integer > 1)
     countDown(integer - 1);
} // end countDown

Fig.4-2 The effect of method call countDown(3)



Tracing a Recursive Method

Data Structures – 4. Recursion

Fig. 4-3 Tracing the 
recursive call 
countDown(3)



Tracing a Recursive Method
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Fig. 4-4 The stack of activation records during the 
execution of a call to countDown(3)… continued →



Tracing a Recursive Method
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Fig. 4-4 ctd. The stack of activation records during the 
execution of a call to countDown(3)

Note: the recursive 
method will use more 

memory than an 
iterative method due 

to the stack of 
activation records



Recursive Methods that Return a Value

●Task: Compute the sum
1 + 2 + 3 + … + n for an integer n > 0
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public static int sumOf(int n)
{ int sum;
if (n = = 1)
    sum = 1; // base case
else
    sum = sumOf(n - 1) + n; // recursive call
return sum;
} // end sumOf



Recursive Methods that Return a Value

Data Structures – 4. Recursion

Fig. 4-5 The stack of activation records 
during the execution of a call to sumOf(3)



Recursively Processing an 
Array

●When processing array recursively, divide 
it into two pieces
○Last element one piece, rest of array another
○First element one piece, rest of array another
○Divide array into two halves

Algorithms – Recursion



Recursively Processing an 
Array
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Fig. 4-6 Two arrays with middle elements 
within left halves



Recursively Processing an 
Array

●A method that processes an array 
recursively
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public static void displayArray(int array[], int first, int last){ 
  if(first == last){
      System.out.println(array[first] + “ “);
  }else{
       int mid = (first + last)/2;
       displayArray(array, first, mid);
       displayArray(array, mid+1, last);
   }
} // end displayArray



Time Efficiency of Recursive Methods

●For the countDown method
 
 
 
 

○The efficiency is O(n)
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public static void countDown(int integer)

{ System.out.println(integer);
if (integer > 1)
countDown(integer - 1);
} // end countDown



A Simple Solution to a Difficult Problem
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Fig. 4-7 The initial configuration of the Towers of 
Hanoi for three disks



A Simple Solution to a Difficult Problem

Rules for the Towers of Hanoi game
1.Move one disk at a time. Each disk you 

move must be a topmost disk.
2.No disk may rest on top of a disk smaller 

than itself.
3.You can store disks on the second pole 

temporarily, as long as you observe the 
previous two rules.



A Simple Solution to a Difficult Problem

Fig. 4-8 The sequence of 
moves for solving the 

Towers of Hanoi problem 
with three disks.

Continued →



A Simple Solution to a Difficult Problem

Fig. 4-8 (ctd) The 
sequence of moves for 
solving the Towers of 

Hanoi problem with three 
disks



A Simple Solution to a Difficult Problem
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Fig. 4-9 The smaller 
problems in a recursive 
solution for four disks



A Simple Solution to a Difficult Problem

●Algorithm for solution with 1 disk as the 
base case
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Algorithm solveTowers(numberOfDisks, startPole, tempPole, 
endPole)

if (numberOfDisks == 1)

Move disk from startPole to endPole

else

{

solveTowers(numberOfDisks-1, startPole, endPole, tempPole)

Move disk from startPole to endPole

solveTowers(numberOfDisks-1, tempPole, startPole, endPole)

}



A Simple Solution to a Difficult Problem

●Algorithm for solution with 0 disks as the 
base case
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Algorithm solveTowers(numberOfDisks, startPole, tempPole, 
endPole)

if (numberOfDisks > 0)

{

solveTowers(numberOfDisks-1, startPole, endPole, tempPole)

Move disk from startPole to endPole

solveTowers(numberOfDisks-1, tempPole, startPole, endPole)

}



A Poor Solution to a Simple Problem

●Fibonacci numbers
○First two numbers of sequence are 1 and 1
○Successive numbers are the sum of the 

previous two
○1, 1, 2, 3, 5, 8, 13, …

●This has a natural looking recursive 
solution
○Turns out to be a poor (inefficient) solution
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A Poor Solution to a Simple Problem

●The recursive algorithm
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Algorithm Fibonacci(n)
if (n <= 1)
return 1
else
return Fibonacci(n-1) + Fibonacci(n-2)



A Poor Solution to a Simple 
Problem
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Fig. 4-10 The computation of the 
Fibonacci number F6 

(a) recursively; (b) iteratively

Time efficiency grows 
exponentially with n

Iterative solution is O(n)



Plan for Analysis of Recursive 
Algorithms

● Decide on a parameter indicating an input’s size.
● Identify the algorithm’s basic operation. 
● Check whether the number of times the basic op. is 

executed may vary on different inputs of the same size. (If 
it may, the worst, average, and best cases must be 
investigated separately.)

● Set up a recurrence relation with an appropriate initial 
condition expressing the number of times the basic op. is 
executed.

● Solve the recurrence (or, at the very least, establish its 
solution’s order of growth) by backward substitutions or 
another method.



Example 1: Recursive evaluation of n!
Definition: n ! = 1 x 2 x … x(n-1) x n for n ≥ 1 and 0! = 1

Recursive definition of n!: F(n) = F(n-1) x n for n ≥ 1 and 
F(0) = 1

 Size: n
Basic operation: Multiplication
Recurrence relation: F(n) = F(n-1)n ; F(0) = 1 (values of n!)

M(n) =M(n-1) + 1 M(0) = 0(Number of Multiplications)

 
 



Example 1 - Recursive Evaluation of n!

1. Input size: n
 
2. Basic Operation: Multiplication
# of Operations different for different inputs of same size:No
 
3. Recurrence relation for # times basic operation executed:
 M(n)=M(n-1) + 1;    M(0)=0;
 
4.  Solving using backward substitution:
= M(n-2) +2 = M(n-3) + 3...= M(n-i) + i 
= M(0) + n  = n
 
5. Algorithm is O(M(n-1) + 1) = O(n)



Example 2 - Towers of Hanoi

1. Input size: n disks (n)
 
2. Basic Operation: Moving a disk 
# of Operations different for different inputs of same size:No
 
3. Recurrence relation for # times basic operation executed:
 M(n)=M(n-1) + 1 + M(n-1);    M(1)=1;
 
4.  Solving using backward substitution:
M(n)= 2M(n-1) + 1= 2[2M(n-2)+1) + 1=22M(n-2) + 2 + 1
        = 22[2M(n-3)+1) + 2 + 1 =  23M(n-3) +22 + 2 + 1 
        = 2iM(n-i) +2i-1 + 2i-2 +... + 2 + 1 = 2iM(n-i) + 2i - 1
let i = n-1
M(n) =  2n-1M(1) + 2n-1 - 1 = 2n-1 + 2n-1 - 1 = 2n- 1
5. Algorithm is O(2M(n-1) + 1) = O(2n)  (exponential)



Example 2 - Towers of Hanoi 
Say every move takes 1millisecond(1x10-6)
    T(n) = CopM(n); 
    Cop=1x10-6

     M(n) = 2n

 
To solve puzzle with 5 disks:
    T(5) = 1x10-6 (25) = 32 milliseconds
To solve puzzle with 15 disks:
    T(15) =  0.033 seconds
To solve puzzle with 30 disks:
    T(30) = 1074 seconds =  17 minutes
To solve puzzle with 50 disks:
    T(50) = 1.125 x 109  seconds = 36 years!
 
Exponential algorithms are not advised for large input sizes!



Summary

●Recursion is a problem-solving process that 
breaks a problem into identical but smaller 
problems

●The definition of a recursive method is that is 
must contain logic that involves a parameter to 
the method and leads to different cases. One or 
more of these cases are base (stopping) cases, 
as they provide a solution that does not require 
further recursion.
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Summary

●For each call to a method, the values of 
the method’s parameters and local 
variables are stored in a Stack, that 
organises them chronologically. The most 
recent at the top. In this way, execution of 
a recursive method can be suspended and 
invoked again when new values are 
obtained.

Data Structures – 4. Recursion



Summary

●A recursive method that process an array often 
divides the array into portions. Recursive calls to 
the method work on each of these array portions

●A recursive method that processes a linked list 
needs a reference to its first node as a 
parameter

●Any solution to the Towers of Hanoi problem 
with n disks requires at least 2n -1 moves. A 
recursive solution is clear and efficient
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Summary

●Each number is the Fibonacci sequence (after 
the first two) is the sum of the previous two 
numbers. Computing a Fibonacci sequence 
recursively is quite inefficient, as the required 
previous numbers are computed several times 
each
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