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Divide and Conquer 
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Divide-and-Conquer 

The most-well known algorithm design strategy: 
1. Divide instance of problem into two or more 

smaller instances 
 

2. Solve smaller instances recursively 
 

3. Obtain solution to original (larger) instance by 
combining these solutions 

 



4-2 

Divide-and-Conquer Technique (cont.) 

subproblem 2  
of size n/2 

subproblem 1  
of size n/2 

a solution to  
subproblem 1 

a solution to 
the original problem 

a solution to  
subproblem 2 

a problem of size n 
(instance) 

It generally leads to 
a recursive 
algorithm! 
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Mergesort 
• Split array A[0..n-1] into about equal halves and make 

copies of each half  in arrays B and C 
• Sort arrays B and C recursively 
• Merge sorted arrays B and C into array A as follows: 

– Repeat the following until no elements remain in one of the arrays: 
• compare the first elements in the remaining unprocessed portions 

of the arrays 
• copy the smaller of the two into A, while incrementing the index 

indicating the unprocessed portion of that array  
– Once all elements in one of the arrays are processed, copy the 

remaining unprocessed elements from the other array into A. 
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Pseudocode of Mergesort 
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Pseudocode of Merge 

Time complexity: Θ(p+q) = Θ(n) comparisons 
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Mergesort Example 

8  3  2  9  7  1  5  4

8  3  2  9 7  1  5  4

8  3  2  9 7 1 5  4

8 3 2 9 7 1 5 4

3  8 2  9 1  7 4  5

2  3  8  9 1  4  5  7

1  2  3  4  5  7  8   9

The non-recursive 
version of Mergesort 
starts from merging 
single elements into 
sorted pairs. 

See here 

http://www.algorithmist.com/index.php/Merge_sort
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Analysis of  Divide-and-Conquer Recurrence 
Algorithms 

The master theorem provides a cookbook solution in asymptotic 
terms (using Big O notation) for recurrence relations.  

We can often represent divide and conquer algorithms as a recurrence 
releation in the following form: 

T(n) = aT(n/b) + f (n)   where f(n) ∈ Θ(nd),   d ≥ 0 
Where n is the size of the problem, a is the number of subproblems, 

n/b is the size of each subproblem, f(n) is the work done outside 
the recursive calls 

 
Master Theorem:    If a < bd,    T(n) ∈ Θ(nd)  
                                  If a = bd,     T(n) ∈ Θ(nd log n)  
                                  If a > bd,     T(n) ∈ Θ(nlog b a )  
Note: The same results hold with O instead of Θ. 
 

Θ(n^2) 
Θ(n^2log n) 
Θ(n^3) 

http://en.wikipedia.org/wiki/Asymptotic
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Recurrence_relation
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Analysis of Mergesort 

• All cases have same efficiency: 
 

• For Master Theorem,  a = 2, b = 2 , d = 1 
• a=bd  so T(n) ∈ Θ(n log n)  

 
• Space requirement: Θ(n)  

 
• Can be implemented without recursion (bottom-

up) 

T(n) = 2T(n/2) + Θ(n), T(1) = 0 
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Improvements 

• Use insertion sort for small subarrays.  
– you can improve most recursive algorithms by 

handling small cases differently. Switching to insertion 
sort for small subarrays will improve the running time 
of a typical mergesort implementation by 10 to 15 
percent. 

– We can reduce the running time to be linear for arrays 
that are already in order by adding a test to skip call 
to merge() if a[mid] is less than or equal to a[mid+1]. 
With this change, we still do all the recursive calls, but 
the running time for any sorted subarray is linear. 
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Quicksort 
• Select a pivot (partitioning element) – here, the first 

element 
• Rearrange the list so that all the elements in the first s 

positions are smaller than or equal to the pivot and all the 
elements in the remaining n-s positions are larger than or 
equal to the pivot (see next slide for an algorithm) 
 
 
 
 
 

• Exchange the pivot with the last element in the first (i.e., ≤) 
subarray — the pivot is now in its final position 

• Sort the two subarrays recursively 
 

p 

A[i]≤p A[i]≥p 
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Quicksort Algorithm- 

ALGORITHM Quicksort(A[l..r]) 
//Sorts a subarray by quicksort 
//Input: A subarray A[l..r] of A[O,n -1], defined by its left and  
// right indices l and r 
//Output: Subarray A[l .. r] sorted in non-decreasing order 
if l < r 
s = Partition(A[l .. r]) //s is is a split position 
Quicksort(A[l .. s- 1]) 
Quicksort(A[s + l..r]) 
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ALGORITHM Partition(A[l .. r]) 
//Partitions a subarray by using its first element as a pivot 
//Input: A subarray A[l..r] of A[O .. n - 1], defined by its left and right indices l  
// and r (l < r) 
//Output: A partition of A[l..r ], with the split position returned as 
II this method's value 
p ← A[l] 
i ← l; j ← r + 1 
repeat 
      repeat i ← i + 1 until A[i]>= p 
      repeat j ←  j - 1 until A[j] <= p 
      swap(A[i], A[j]) 
until i >=  j 
swap(A[i], A[j]) //undo last swap when i >= j 
swap(A[l], A[j]) 
return j 
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Quicksort Example 

5   3   1   9   8   2   4   7 

 2  3  1  4  5  8  9  7 

1  2  3  4  5  7  8  9 

1  2  3  4  5  7  8  9 

1  2  3  4  5  7  8  9 

1  2  3  4  5  7  8  9 
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Analysis of Quicksort 
• Best case: split in the middle — Θ(n log n)  
• Worst case: sorted array! — Θ(n2)  
• Average case: random arrays — Θ(n log n) 

 
• Improvements: 

– better pivot selection: median of three partitioning  
– instead of just taking the first item (or a random item) as pivot, take the 

median of the first, middle, and last items in the list 
– switch to insertion sort on small subfiles 
– elimination of recursion 
These combine to 20-25% improvement 

• Considered the method of choice for internal 
sorting of large files (n ≥ 10000) 

 

T(n) = T(n-1) + Θ(n) 
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Binary Search 
Very efficient algorithm for searching in sorted array: 
                                              K 
              vs 
   A[0]  .  .  .  A[m]  .  .  .  A[n-1] 
If K = A[m], stop (successful search);  otherwise, continue 
searching by the same method in A[0..m-1] if K < A[m] 
and in A[m+1..n-1] if K > A[m] 

 

l ← 0;   r ← n-1; 
while l ≤ r do 
 m ←  (l+r)/2 
     if  K = A[m]  return m 
     else if K < A[m]  r ← m-1 
     else l ← m+1 
return -1 
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Analysis of Binary Search 
• Time efficiency 

– worst-case recurrence:  Cw (n) = 1 + Cw( n/2 ),  Cw (1) = 1  
solution: Cw(n) = log2(n+1)  
 
This is VERY fast: e.g., Cw(106) = 20 
 

• Optimal for searching a sorted array 
 

• Limitations: must be a sorted array (not linked list) 
 

• Bad (degenerate) example of divide-and-conquer 
because only one of the sub-instances is solved 
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Closest-Pair Problem by Divide-and-
Conquer 

•  Given a set of N points, find the pair with  
minimum distance 
•   brute force approach:  

•consider every pair of points, compare distances & take 
minimum 
•O(N2) 
 

 
 there exists an O(N log N) divide-and-conquer solution 

 

1. sort the points by x-coordinate 
2. partition the points into equal parts using a vertical line in the plane 
3. recursively determine the closest pair on left side (Ldist) and the 

closest pair on the right side (Rdist) 
4. find closest pair that straddles the line, each within min(Ldist,Rdist) of 

the line  (can be done in O(N)) 
5. answer = min(Ldist, Rdist, Cdist) 
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Efficiency of the Closest-Pair Algorithm 

 
Running time of the algorithm (without sorting) 

is: 
                    T(n) = 2T(n/2) + M(n),  where M(n) ∈ 
Θ(n)  
 

By the Master Theorem (with a = 2, b = 2, d = 1) 
                                  T(n) ∈ Θ(n log n) 
So the total time is Θ(n log n). 
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Comparable interface: review 

• Comparable interface: sort using a type's 
natural order. 
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Comparator interface 

• Comparator interface: sort using an alternate 
order. 
 
Ex. Sort strings by: 

• Natural order. Now is the time 
• Case insensitive. is Now the time 
• Phone book. McKinley Mackintosh 
•  . . . 
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Comparator interface: system sort 

• To use with Java system sort: 
• Create Comparator object. 
• Pass as second argument to Arrays.sort(). 

 
 
 
 

• Can decouple the definition of the data type from 
the definition of what it means to compare two 
objects of that type. 
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Comparator interface: 
implementing 

• To implement a comparator: 
– Define an inner class(next topic)  that implements 

the Comparator interface. 
– Implement the compare() method. 
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References 

http://en.wikipedia.org/wiki/Closest_pair_of_po
ints_problem 

 
http://algs4.cs.princeton.edu/home/ 
 

http://en.wikipedia.org/wiki/Closest_pair_of_points_problem
http://en.wikipedia.org/wiki/Closest_pair_of_points_problem
http://algs4.cs.princeton.edu/home/
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