Divide and Conquer

4-0

Divide-and-Conquer

The most-well known algorithm design strategy:

1. Divide instance of problem into two or more
smaller instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance by
combining these solutions

4-1

Divide-and-Conquer Technique (cont.)

a problem of size n

subproblem 1 subproblem 2

of size n/2 of size n/2

a solution to a solution to
subproblem 1 subproblem 2

the original problem -
d recursive

algorithm!

Mergesort

e Split array A[0..n-1] into about equal halves and make
copies of each half in arrays Band C

e Sortarrays B and C recursively

e Merge sorted arrays B and C into array A as follows:

— Repeat the following until no elements remain in one of the arrays:

e compare the first elements in the remaining unprocessed portions
of the arrays

e copy the smaller of the two into A, while incrementing the index
indicating the unprocessed portion of that array

— Once all elements in one of the arrays are processed, copy the
remaining unprocessed elements from the other array into A.

npt M E R G E 5 O R T E X A M P L E
sortlefthalf E E O M O R R S
sort right half A E E L M P T X
mergeresults 4 E E E E G L M M 0O P R R S T X

Mergesort overview

4-3

Pseudocode of Mergesort

ALGORITHM Mergesort(A[O..n — 1])

/[Sorts array A[0..n — 1] by recursive mergesort
//Input: An array A[0..n — 1] of orderable elements
//Output: Array A[0..n — 1] sorted in nondecreasing order

ifn>1

copy A[0..[n/2] — 1] to B[O0..|n/2] — 1]

copy A[[n/2]
Mergesort(B
Mergesort(C

n—1]to C
0.1n/2) =1
0.[n/2] — 1

Merge(B, C, A)

0..[n/2] — 1]

)
)

4-4

Pseudocode of Merge

ALGORITHM Merge(B[0..p — 1], C[0..g — 1], A|0..p +g —1])

/[Merges two sorted arrays into one sorted array
/[[Input: Arrays B[0..p — 1] and C[0..g — 1] both sorted
//Output: Sorted array A[0..p + g — 1] of the elements of B and C
[<0, j<0; k<0
while i < pand j < g do

if B[i] < C[/]

Alk] < Bli]; i < i +1

else A[k] < C[j], j«< j+1

k<—k+1
ifi =p

copy Clj..g —1]to Alk..p + g — 1]
else copy Bli..p — 1|to Alk..p +g — 1]

B(ptq) — ©(n) .

Mergesort Example

88888888

VANEIVAN
ANV ANV ARIAY

VERVALVARY;

R

11111111

The non-recursive
version of Mergesort
starts from merging
single elements into
sorted pairs.

See here

4-6

http://www.algorithmist.com/index.php/Merge_sort

Analysis of Divide-and-Conquer Recurrence
Algorithms

The master theorem provides a cookbook solution in asymptotic
terms (using Big O notation) for recurrence relations.

We can often represent divide and conquer algorithms as a recurrence
releation in the following form:

T(n) =aT(n/b) + f(n) where f(n) € ®(nY), d >0
Where n is the size of the problem, a is the number of subproblems,

n/b Is the size of each subproblem, f(n) is the work done outside
the recursive calls

Master Theorem: Ifa<bhd T(n) e ®(nd) e(n"2)
Ifa=Dbd T(n) e ©(n%log n)®(n”‘ 2log n)
fa>bd, T(n) e o(nlosna)@"3)

Note: The same results hold with O instead of ©.

4-7

http://en.wikipedia.org/wiki/Asymptotic
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Recurrence_relation

Analysis of Mergesort

All cases have same efficiency:
T(n) = 2T(n/2) + O(n), T(1) =0

For Master Theorem, a=2,b=2,d=1
e a=b% so T(n) € O(nlog n)

Space requirement: ©O(n)

Can be implemented without recursion (bottom-
up)

4-8

Improvements

e Use insertion sort for small subarrays.

— you can improve most recursive algorithms by
handling small cases differently. Switching to insertion
sort for small subarrays will improve the running time
of a typical mergesort implementation by 10 to 15

percent.

— We can reduce the running time to be linear for arrays
that are already in order by adding a test to skip call
to merge() if a[mid] is less than or equal to a[mid+1].
With this change, we still do all the recursive calls, but
the running time for any sorted subarray is linear.

4-9

Quicksort

Select a pivot (partitioning element) — here, the first
element

Rearrange the list so that all the elements in the first s
positions are smaller than or equal to the pivot and all the
elements in the remaining n-s positions are larger than or
equal to the pivot (see next slide for an algorithm)

N AN ~ %

AB{SD . =
Exchange the pivot with the last element’in the first (i.e., <)
subarray — the pivot is now in its final position

Sort the two subarrays recursively

4-10

Quicksort Algorithm-

ALGORITHM Quicksort(A]l..r])

//Sorts a subarray by quicksort

//Input: A subarray A[l..r] of A[O,n -1], defined by its left and
// right indices | and r

//Output: Subarray A[l .. r] sorted in non-decreasing order
ifl<r

s = Partition(A[l .. r]) //s is is a split position

Quicksort(A[l .. s- 1])

Quicksort(A[s + 1..r])

4-11

ALGORITHM Partition(A[l .. r])
//Partitions a subarray by using its first element as a pivot
//Input: A subarray A[l..r] of A[O .. n - 1], defined by its left and right indices |
//andr(l<r)
//Output: A partition of A[l..r], with the split position returned as
I this method's value
p < All]
i<—Lj<—r+1
repeat
repeat i< i+ 1 until Ali]>=p
repeatj < j-1until Alj]<=p
swap(Ali], ALj])
until i >= j
swap(Alil, Alj]) //undo last swap when i >=j
swap(A[l], ALj])
returnj

4-12

Quicksort Example

53198 247

23145897
1234 769
4

4-13

Analysis of Quicksort
Best case: split in the middle — ©(n log n)

Worst case: sorted array! — O(n?) 1 =T(-1+e(M)
Average case: random arrays — ©(n log n)

Improvements:

— better pivot selection: median of three partitioning

— instead of just taking the first item (or a random item) as pivot, take the
median of the first, middle, and last items in the list

— switch to insertion sort on small subfiles
— elimination of recursion
These combine to 20-25% improvement

Considered the method of choice for internal
sorting of large files (n =2 10000)

4-14

Binary Search

Very efficient algorithm for searching in sorted array:

K

VS

A[O] ... Alm] . . . A[n-1]

If K= A[m], stop (successful search); otherwise, continue
searching by the same method in A[0..m-1] if K < A[m]
and in Aim+1..n-1] if K> A[m]

[< 0; r<n-1;

while [<rdo
m <« L(l+r)/2]
if K=A[m] returnm
else if K< A[m] r< m-1
else [« m+1

return -1
4-15

Analysis of Binary Search

Time efficiency

— worst-case recurrence: C,(n)=1+C,[(Ln/2]), C,(1)=1
solution: C,(n) = |_Iog2(n+1)—|

This is VERY fast: e.g., C(10°) = 20
Optimal for searching a sorted array

Limitations: must be a sorted array (not linked list)

Bad (degenerate) example of divide-and-conquer
because only one of the sub-instances is solved

4-16

Closest-Pair Problem by Divide-and-

Conquer

e Given a set of N points, find the pair with
minimum distance

* brute force approach:

econsider every pair of points, compare distances & take
minimum
*O(N?)

= there exists an O(N log N) divide-and-conquer solution

1. sort the points by x-coordinate
2. partition the points into equal parts using a vertical line in the plane

3. recursively determine the closest pair on left side (Ldist) and the
closest pair on the right side (Rdist)

4. find closest pair that straddles the line, each within min(Ldist,Rdist) of
the line (can be done in O(N))

5. answer = min(Ldist, Rdist, Cdist)

17 4-17

Efficiency of the Closest-Pair Algorithm

Running time of the algorithm (without sorting)
IS:

T(n) = 2T(n/2) + M(n), where M(n) <
©(n)

By the Master Theorem (witha=2,b=2,d=1)
T(n) € O(n log n)
So the total time is O(n log n).

4-18

Comparable interface: review

e Comparable interface: sort using a type's
natural order.

public class Date implements Comparable<Date>

{

private final int month, day, year;

public Date(int m, int d, int y)
{

month = m;
day = d;
year =y;

}

public int compareTo(Date that)

{
if (this.year < that.year) return
if (this.year > that.year) return
if (this.month < that.month) return
if (this.month > that.month) return
if (this.day < that.day) return
if (this.day > that.day) return
return 0;

~
*

_1’
+1;
_1’
+1;
_1’
+1;

\ natural order

4-19

Comparator interface

Comparator interface: sort using an alternate
order.

Ex. Sort strings by:

Natural order. Now is the time
Case insensitive. is Now the time
Phone book. McKinley Mackintosh

4-20

Comparator interface: system sort

To use with Java system sort:
Create Comparator object.
Pass as second argument to Arrays.sort().

) uses natural order uses alternate order defined by
String[] a; / Comparator<String> object

Arrays.sort(a);
Arrays.sort(a, String.CASE_INSENSITIVE_ORDER);
Arrays.sort(a, Collator.getInstance(new Locale("es")));

Arrays.sort(a, new BritishPhoneBookOrder());

Can decouple the definition of the data type from
the definition of what it means to compare two
objects of that type.

4-21

Comparator interface:
implementing

e To implement a comparator:

— Define an inner class(next topic) that implements
the Comparator interface.

— Implement the compare() method.

4-22

public class Student

{
puh]‘icf‘i nal Comparator<Student> BY_NAME = new ByName();
public staticifinal Comparator<Student> BY_SECTION = new BySection(Q;
private final $tring name;
private final ipt section;
- one Comparator for the class
privateﬂass ByName implements Comparator<Student:>
{
public int compare(Student v, Student w)
{ return v.name.compareTo(w.name); }
}
private static class BySection implements Comparator<Student>
{
public int compare(Student v, Student w)
{ return v.section - w.section; }
}
} this technigue works here since no danger of overflow
Arrays.sort(a, Student.BY_ NAME): Arrays.sort(a, Student.BY_SECTION);

664-480-0023 097 Little Furia A

874-088-1212 121 Whitman Rohde A

991-878-4944 308 Blair Andrews 3 A 664-480-0023 097 Little
884-232-534] 11 Dickinson Chen A 991-878-4944 308 Blair
A
B
E
B

766-093-9873 101 Brown

232-343- 5555 343 Forbes

(W]

J66-093-9873 101 Brown Fox - 884-232-5341 11 Dickinson
766-093-9873 101 Brown Kanaga
BOB-122-9643 22 Brown Battle

898-122-9643 22 Brown

874-088-1212 121 Whitman

4-23

232-343-5555 343 Forbes

Gazsi 766-093-9873 101 Brown

References

http://en.wikipedia.org/wiki/Closest pair of po

ints problem

http://algs4.cs.princeton.edu/home/

4-24

http://en.wikipedia.org/wiki/Closest_pair_of_points_problem
http://en.wikipedia.org/wiki/Closest_pair_of_points_problem
http://algs4.cs.princeton.edu/home/

	Divide and Conquer
	Divide-and-Conquer
	Divide-and-Conquer Technique (cont.)
	Mergesort
	Pseudocode of Mergesort
	Pseudocode of Merge
	Mergesort Example
	Slide Number 8
	Analysis of Mergesort
	Improvements
	Quicksort
	Quicksort Algorithm-
	Slide Number 13
	Quicksort Example
	Analysis of Quicksort
	Binary Search
	Analysis of Binary Search
	Closest-Pair Problem by Divide-and-Conquer
	Efficiency of the Closest-Pair Algorithm
	Comparable interface: review
	Comparator interface
	Comparator interface: system sort
	Comparator interface: implementing
	Slide Number 24
	References

