
Recommendations
Frank Walsh



Problem 
Statement

• Calculate a list of movie recommendations for a 
user based on the users ratings. 

• Input: user.id

• Output: list of movie recommendations

• Use the users movie ratings to find movies.

• General idea:
• find similar user(s) that like and dislike same movies

• Recommend unrated movies that the similar users 
have rated highly



An Approach

User Similarity

• Calculate a similarity score for all other users based on ratings

• Store in a List

Find Similar user

• Get the similar User associated with top similarity score

• Get all movies rated by the similar user user

Remove common 
films

• Remove movies that similar user and current user have both rated

Return 
recommendations 

• Return remaining movies, sorted by movie rating descending.



Calculate 
Similarity 

Score

private int getSimilarityScore(User user, User 
other) {

1. Get all ratings for user

2. Get all ratings for other

3. Get list of movies rated by both users(user and 
other)

4. Set score = 0

5. For each movie

1. Calculate product of user rating and other 
rating (user.rating*other.rating)

2. Add to score

6. Return Rating

}



Guava 
Functions

• Function<F,T>

• One way transform from F to T

• T apply(F input)

• VERY GOOD FOR TRANSFORMING COLLECTIONS



Getting a list of Rating IDs
Function<Rating, Long> transform = new Function<Rating, Long>() {

@Override
public Long apply(Rating from) {

return from.id;
}

};

List<Rating> currentMovies = getUserRatings(user.movieId);
List<Rating> otherMovies = getUserRatings(other.movieId);

// list of movie ids of current users ratings
List<Long> currentMovieIDs = Lists.transform(currentMovies,transform);

// list of movie ids rated by other user
List<Long> otherMovieIDs = Lists.transform(otherMovies,transform);

// common list of rated movies
currentMovieIDs.retainAll(otherMovieIDs);


