

Introduction to Node.js
Frank Walsh

Agenda

● What is Node.js
● V8 engine
● Non Blockin and Blocking
● Typical Node.js service structure

What's Node.js

● High-performance server-side JavaScript

– Used to build scalable networked services and
applications.

● Uses the Google Chrome V8 just-in-time compilation to
Machine code

– Fast because V8 is mostly C.
● Well designed module system for third party code (i.e. Node

Packet Manage, NPM)

What's Node: V8 engine

● Embeddable C++ component
– in the lab you (may have) needed to install C++

● Can expose C++ objects to Javascript
● Very fast and multi-platform
● Find out a bit about it's history here:

http://www.google.com/googlebooks/chrome/big
_12.html

http://www.google.com/googlebooks/chrome/big_12.html
http://www.google.com/googlebooks/chrome/big_12.html

What's Node.js: Event-based

● Generally, input/output (io) is slow.
– Reading/writing to data store, probably across a network.

● Calculations in cpu are fast.
– 2+2=4

● Most time in programs spent waiting for io to complete.
– In applications with lots of concurrent users (e.g. web servers), you

can't stop everything and wait for io to complete.

● Solutions to deal with this are:
– Blocking code with multiple threads of execution (Apache, IIS)

– Non-blocking, event-based code in single thread (NGINX, Node.js)

Blocking (Traditional)

● Traditional code waits for input
before proceeding (Synchronous)

● The thread on a server "blocks" on io
and resumes when it returns.

Non-blocking (Node)

● Node.js code runs in a Non-blocking, event-
based Javascript thread
– No overhead associated with threads

– Good for high concurrency (i.e. lots of client
requests at the same time)

Blocking/Non-blocking Example

Blocking

● Read from file and set
equal to contents

● Print Contents
● Do Something Else...

Non-blocking

● Read from File
– Whenever read is

complete, print
contents

● Do Something Else...

Blocking/Non-blocking Example

var contents = fs.readFileSync('/etc/hosts');

console.log(contents);

console.log('Doing something else');

fs.readFile('/etc/hosts', function(err, contents) {

console.log(contents);

});

console.log('Doing something else');

Blocking

Non-blocking

Blocking vs. Non-blocking

● Threads consume resources
– Memory on stack

– Processing time for context switching etc.

● No thread management on single threaded
apps
– Just execute “callbacks” when event occurs

– Callbacks are usually in the form of anonamous
functions.

Why does it matter...

● This is why:

http://blog.webfaction.com/a-little-holiday-present

http://blog.webfaction.com/a-little-holiday-present

Event Queue

Node.js Event Loop

var http = require('http');

var server = http.createServer(function (request, response) {

 response.writeHead(200, {"Content-Type": "text/plain"});

 response.end("Hello World\n");

});

server.listen(8080);

console.log("Server running at http://127.0.0.1:8080/");

Checking for
Events

Known Events

request

Callback

EVENT LOOP STARTS WHEN FINISHED

request
request

Callbacks

var http = require('http');

http.createServer(function(request, response) {

 response.writeHead(200);

 response.write("Hello!");

 setTimeout(function(){

 response.write("Good Bye!");

 response.end();

 }, 5000);

}).listen(8080);

“request” callback

“timeout” callback

Example of 2 callbacks

Callback Timeline, Non Blocking

Callback Timeline, Blocking

Emitting Event in Node
● Many objects can emit events in node.

● See here for a description of how HTTP Server
works

http://nodejs.org/api/http.html#http_http_createserver_requestlistener

Node Modules

Node Modules

● Node has a small core API
● Most applications depend on 3rd party modules
● 3rd party modules curated in online registry called the Node Package

Manager system (NPM)

● NPM downloads and installs modules, placing them into a
node_modules folder in your current folder.

Node Modules

● Installing a NPM Module is easy:
● Navigate to the application folder and run:

npm install express

● This installs into a “node_module” folder in the
current folder.

● To use the module in your code, use:

var express = require('express');

● This loads express from local node_modules folder.

Global Node Modules

● Sometimes you may want to access modules from
the shell/command line.

● You can install modules that will execute glovbaly by
including the '-g'.

● Example, Grunt is a Node-based software
management/build tool for Javascript.

npm install -g grunt-cli

● This puts the “grunt” command in the system path,
allowing it to be run from any directory.

http://gruntjs.com/getting-started

Creating your own Node Modules

● We want to create the following module called
custom_hello.js:

var hello = function() {

console.log("hello!");

}
exports = hello;

● To access in our application, app.js:

var hello = require('./custom_hello');
hello();

Export defines what
require returns

Creating your own Node Modules

● Another example custom_goodbye.js:

exports.goodbye = function() {

console.log("Bye!");

}

● To access in our application, app.js:

var gb = require('./custom_goodbye');

gb.goodbye();

Export defines what
require returns

Creating your own Node Modules

● Exporting Multiple Functions, my_Module.js:

exports.hello = function() {

console.log("Hello!");

}

exports.goodbye = function() {

console.log("Bye!");

}

● To access in our application, app.js:

var myMod = require('./my_Module.js');
myMod.hello();
myMod.goodbye();

Export defines what
require returns

The require search

● Require searches for modules based on path
specified:

var myMod = require('./myModule') //current dir

var myMod = require('../myModule') //parent dir

var myMod = require('../modules/myModule')

● Just providing the module name will search in
node_modules folder

var myMod = require('myModule')

Node Applications Structure

Structuring Node Services

● Node Server Code needs to be structured
– Manage code base

– Keeps code maintainable

● Typical structure for Node.js service
– common code

– Main server code

– Api implementation code

– Helper code

Example Approach:

● Use a “node” folder as the top level to contain all
node.js files
– Run npm in this folder to ensure just one

node_modules folder

– Use a lib folder within the node folder for your code

-node
--->lib
--->node_modules

common.js

● Can define a “node/lib/common.js” for common code

● Use require to load the common.js file. Anything
exported by common.js can be used in the calling
script:

// build-in modules
exports.fs = require('fs')
// npm modules
exports.connect = require('connect')
// utilities
exports.zeropad = function(num){

return num < 10 ? '0'+num : ''+num
}

var common = require('./common')
console.log(common.zeropad(1))
var server = common.connect.createServer()
common.fs.open('/etc/passwd', ...)

